Skip to main content

Bosch is helping autonomous robots find electric charging stations on the moon

 

Electric vehicles are inching towards the mainstream in America, but they’re already the norm on the surface of the moon. While some of the robots created by NASA rely on solar panels for electricity, a group of research firms that includes Germany’s Bosch is leveraging familiar technology to help next-generation machines find charging stations.

Recommended Videos

Bosch, Astrobotic, WiBotic, and the University of Washington are developing ways to keep robots juiced up during the lunar night so that they keep continue exploring even when solar panels go to sleep. Engineers are relying on wireless charging, which is normally associated with smartphones and electric cars, and autonomous navigation. On paper, the project is simple: When their batteries are low, the robots will autonomously find a wireless charging pad.

Making this system work on our planet is easier said than done, so fine-tuning it for lunar use is more complicated than it sounds. Notably, the high-riding exploration robots will not be able to rely on GPS to find their destination.

“Navigating a robot on the moon is not the same as navigating a robotic vacuum cleaner through your home, or navigating a self-driving car on the road. Radio-based terrestrial localization solutions are not available on the moon, and the unpredictable lunar terrain and dust make it even harder to perform precise navigation using visual cues alone. Thus, we need intelligent fusion and perception on the robot’s multi-sensory data to solve this unique challenge,” Dr. Samarjit Das, Bosch’s leader of Intelligent IoT group, explained in a statement.

Astrobotic CubeRover
Image used with permission by copyright holder

Multi-sensor fusion technologies are at the core of the project. Robots will move around by analyzing video footage, inertial measurement units, radio frequency movements, and vibrations. The data gathered by these sensors will help the robots gauge the depth of a crater, for example. Bosch will work with Astrobotic’s CubeRover (shown above), which is about the size of a shoebox and weighs under five pounds, so it’s not going to be testing a monster truck of a rig with the turning radius of a Freightliner. It’s nimble, which greatly facilitates the project.

Meanwhile, the University of Washington and WiBotic will develop the wireless charger. It will be light, and it will deliver ultra-fast charging so the robots aren’t down for hours at a time. Astronauts get range anxiety, too.

NASA’s Tipping Point program is investing $5.8 million into the project, and researchers hope to demonstrate the technology halfway through 2023. If everything goes according to plan, the technology developed for this project will likely trickle into other exploration programs. Reliable autonomous robots could later ultimately parts of the moon we’ve never explored, for example, or the system could be modified to let them roam on other planets.

Ronan Glon
Ronan Glon is an American automotive and tech journalist based in southern France. As a long-time contributor to Digital…
Waymo recalled 1,200 robotaxis following collisions with road barriers
Waymo Jaguar I-Pace

Waymo’s autonomous-car technology has made great advances over the years to the point where it’s now allowed to offer paid robotaxi rides in select locations in the U.S.

But the development of the technology is ongoing, and the robotaxi rides continue to gather valuable data for Waymo engineers to pore over as they further refine the driverless system to make it as reliable and efficient as possible. Which is why glitches will sometimes occur.

Read more
Apple CarPlay Ultra looks stunning in Aston Martin supercar debut
Apple CarPlay Ultra

Apple CarPlay Ultra is the next generation of the Cupertino, California-based firm's smartphone projection system for your car, and it's available in new vehicles in the US and Canada.

When we say "new cars", your options are very much limited to one brand... Aston Martin. So you'll need deep pockets if you want to experience CarPlay Ultra for yourself.

Read more
Archer’s flying taxis head to LA for the 2028 Olympics
archer air taxi la28 inglewood aerial a final

Remember the buzz about flying taxis zipping through Paris for the 2024 Olympics? That sci-fi fantasy never got off the ground —Germany’s Volocopter dream was denied certification, leaving fans staring at the same old ground traffic. But now, the skies are opening again for a second shot at glory—this time over Los Angeles.
Archer Aviation, the California-based electric vertical takeoff and landing (eVTOL) company, has been named the exclusive air taxi provider for the 2028 Los Angeles Olympic and Paralympic Games.
Archer’s Midnight aircraft, a piloted electric air taxi designed to carry four passengers, will be whisking around VIPs, fans, and stakeholders between venues and key locations like LAX, Hollywood, Santa Monica, and even Orange County. Think 10-20 minute flights that skip the infamous LA gridlock and land you right where the action is—on the roof, basically.
“We want to transform the way people get around Los Angeles and leave a legacy that shapes the future of transportation in America. There’s no better time to do that than during the LA28 Games,” said Adam Goldstein, CEO and founder of Archer Aviation.
And Midnight isn’t just a pretty rotor. It’s a whisper-quiet, emission-light aircraft with 12 rotors and a redundant, airline-level safety design.
What’s more, Archer and LA28 are working together to electrify vertiport hubs around the city—think futuristic sky stations—to serve not only Games-time needs but also to plant seeds for a post-Olympic air mobility network.
The air mobility market has been fast developing over the past few years, featuring the likes of Hyundai partnership with China’s XPeng HT Aero and Toyota's backing of Joby Aviation, a U.S. venture. Joby bought Uber Elevate in 2020, hoping to someday pair its air taxis with Uber’s ride-hailing app.
Archer, for its part, has been busy building a strategic partnership with United Airlines, which has already placed orders for the aircraft and is helping with logistics to integrate air taxis into airport-to-downtown travel. More than a demo for the cameras, the LA28 partnership will showcase urban air travel for real-world daily use, starting with one of the most high-profile events on Earth.
After raising false hopes in Paris, the air taxi dream is aiming for liftoff in LA—and this time, it might just stick the landing.

Read more