Skip to main content

NASA asks for the public’s help to design a robot for digging on the moon

If you’re a designer or engineer who’s stuck at home and bored, then NASA has a challenge for you. The agency has developed a robot for digging on the moon, called Regolith Advanced Surface Systems Operations Robot or RASSOR, and it wants the public’s help in designing a part of it called the bucket drum. This part collects the soil, or regolith, from the surface of the moon and stores it securely. When the regolith has been transported to its destination, the bucket drum rotates to dump the material in the required location.

Currently, the bucket drums are hollow cylinders, one at each end of RASSOR. They have scoops which pick up the regolith by pulling it toward the center of the robot, so it can collect material from both front and back. This ensures that the robot doesn’t dig more at one end than the other, which would make excavating more difficult.

A close-up view of the bucket drums on Regolith Advanced Surface Systems Operations Robot (RASSOR) in the regolith bin inside Swamp Works at NASA’s Kennedy Space Center in Florida on June 5, 2019.
A close-up view of the bucket drums on Regolith Advanced Surface Systems Operations Robot (RASSOR) in the regolith bin inside Swamp Works at NASA’s Kennedy Space Center in Florida on June 5, 2019. NASA/Kim Shiflett

The problem with the current design of the bucket drums is that they are too heavy. The mechanism relies on the weight of the drums pushing down into the regolith to create traction and pick up material. And when it comes to space missions, every gram of weight saved is important.

So NASA is looking for suggestions for alternative mechanisms that could achieve the same collecting of lunar soil, but at a lighter weight. The challenge is to find “a better shape for RASSOR’s bucket drum and baffling, or sheet metal inside of it that can capture and hold more regolith.” The challenge will be hosted on GrabCAD, a site for designing and sharing 3D models.

“We’ve held challenges on GrabCAD in the past and they were very successful,” Jason Schuler, a robotics engineer in the Exploration Research and Technology Programs at NASA’s Kennedy Space Center, said in a statement. “As a repository for computer-aided design, the platform helps us reach professional designers, engineers, manufacturers, and students outside of the space industry who may have an idea that could benefit NASA.”

There is prize money totaling $7,000 for the top five submissions. To see more details and enter the contest, visit the GrabCAD site. “With RASSOR, we’re no longer relying on the traction or the weight of the robot. It is possible to excavate on the Moon or Mars with a really lightweight robot,” Schuler said. “RASSOR is excavation and transportation all in one, but we’d like to improve the design.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA’s Juno spacecraft to pass within 1,000 miles of volcanic moon Io
This image revealing the north polar region of the Jovian moon Io was taken on October 15 by NASA’s Juno. Three of the mountain peaks visible in the upper part of image, near the day-night dividing line, were observed here for the first time by the spacecraft’s JunoCam.

NASA's Juno spacecraft, currently in orbit around Jupiter, will soon be making a close flyby of one of the planet's most dramatic moons, Io. On Saturday, December 30, Juno will come within 1,000 miles of Io, making it the closest spacecraft to that moon in the last 20 years.

Io is an intriguing place because it shows signs of significant volcanic activity, making it the most geologically active body in the solar system. It hosts over 400 active volcanoes, which periodically erupt due to hot magma inside the moon created by friction caused by the gravitational pull between Jupiter and its other large moons.

Read more
NASA tests moon elevator for Artemis III mission
Two NASA astronauts test an elevator for the Artemis III lunar mission.

NASA’s highly anticipated Artemis III mission will see the first woman and first person of color step onto the lunar service in a moment that will also mark the first human lunar landing since 1972.

If the space agency sticks to its schedule, the mission will take place in 2025, but there’s still much work to be done to ensure that that happens.

Read more
NASA video looks ahead to an exciting 2024
NASA's SLS rocket launching at the start of the Artemis I mission.

It’s been a busy 12 months for NASA, with highlights including the space agency’s first-ever return of asteroid material, the launch of the Psyche spacecraft to explore a metallic asteroid, and continued incredible work by the James Webb Space Telescope.

In a new video released by NASA on Wednesday, the space agency looks ahead to what promises to be an even more exciting 2024.

Read more