Skip to main content

DDR5 memory: Everything you need to know

DDR5 RAM is the next generation of system memory, and it’s just around the corner. It promises greater bandwidth, increased capacity, and lower power demands than existing DDR4, helping to make the most of not only modern CPUs but onboard graphics, too. If you want to take advantage of the fastest memory kits ever made, here’s everything you need to know about DDR5.

Pricing and availability

Teamgroup DDR5 Memory modules.

The first DDR5 RAM chips were made in 2018, though it wasn’t until 2020 that the standard was officially released, and actual commercial kits didn’t become widely available until the summer of 2021. TeamGroup released the first kit of twin 16GB sticks at DDR5-4800 speeds, with a price tag of $311. That’s more expensive than most 32GB DDR4 kits, but not by much, and actually cheaper than the few DDR4 kits that can reach those speeds at that capacity.

It’s not yet known whether that kind of price will be typical of DDR5, as the kits sold out almost immediately. Typically, new-generation memory starts more expensive than the last, especially at higher capacities or frequencies, and then slowly prices equalize before the new, more populace generation of memory becomes the more affordable option.

For now, DDR5 will remain a mere curiosity, however, as there are no options for mainstream processors and motherboards that can support it. The first platform that will be able to is Intel’s upcoming Alder Lake CPUs, which are slated for release at some point in the second half of 2021. Some Alder Lake CPUs have reportedly gone on sale in China, however, so the launch may be closer to the summer than winter.


Zadak DDR5 memory modules in motherboard.
Zadak is one of the few manufacturers that have announced DDR5 modules. Zadak

DDR5 memory will bring with it a number of performance improvements, most notably a much greater frequency potential. Like DDR4 before it, the first kits won’t offer bandwidth drastically higher than that of the best last-generation kits, but they will be able to do it without enabling XMP and will have official motherboard support at those higher frequencies.

Although DDR4 kits have been shown to be capable of running in excess of 5Gbps, the official specification maxes out at 3.2Gbps. In comparison, DDR5 debuted at 4.8Gbps, but will be able to reach 6.4Gbps. Memory manufacturers will likely push the data rate far beyond that in due course, potentially reaching over 8Gbps.

As is expected from higher bandwidth memory, timings for DDR5 will be looser than was typically used on DDR4. The first TeamGroup Elite DDR5 modules had timings as loose as 40-40-40-77. In comparison, a competitive DDR4 G.Skill TridentZ DDR4-4800 kit has timings of just 20-30-30-50. That advantage may give DDR4 a performance edge in some settings compared to early DDR5 memory modules, but performance will improve considerably over the life of the technology.

The new channel architecture of DDR5 may play a part in improving its performance, too, by enhancing memory access efficiency. With DDR5, each DIMM will have two channels rather than one. Although the overall width of these channels will remain the same — 64 bits — the use of two smaller channels should improve efficiency, which could, in turn, improve performance, as well as signal integrity.

We’ll need to wait for third-party reviews of these modules on ready-for-release motherboards and processors, but early leaks suggest it holds a significant performance advantage over DDR4 at similar frequencies. In one early benchmark, a 32GB DDR5 kit was over a third faster than a comparably specced DDR4 kit (with much tighter timings) in most tests and up to 112% faster in one particular benchmark.

Capacity and power

One of the most obvious and immediate advantages of DDR5 is its support for greater-capacity memory chips. Where DDR4 dies were capped at 16GB, DDR5 has the ability to reach 64GB per chip, potentially offering individual stick capacities as high as 256GB. For mainstream PCs, this won’t hold a huge advantage at the top end, but it will be a big boost for HEDT systems and enterprise servers, where much larger single CPU memory arrays will be possible, further increasing the amount of data those monstrously powerful multi-core CPUs (and multi-CPU arrays) can access simultaneously.

One area where this will benefit mainstream PC owners is the upgradeability of their systems. Running a system on a single stick of 16GB or 32GB of memory makes it much easier to upgrade in the future with another stick. That’s particularly useful for small mini-ITX systems, which may only have two DIMM slots, too.

Low-power systems will also benefit from DDR5, as it’s rated to run at just 1.1v. That’s 0.1v less than DDR4, which can run higher when pushed using XMP or manual overclocking. DDR5 will likely offer performance advantages when running at higher voltages, too, but the potential may also be there to undervolt it and reduce its power demands further while still maintaining higher speeds than most DDR4 kits. That could be great news for laptops looking to boost battery life on new-generation hardware.

Editors' Recommendations

Jon Martindale
Jon Martindale is the Evergreen Coordinator for Computing, overseeing a team of writers addressing all the latest how to…
What is Display Stream Compression? Everything you need to know about DSC
HDR demo on the Samsung Odyssey Neo G8.

Display Stream Compression (DSC) is a compression algorithm that lets monitors and TVs display resolutions and refresh rates that they wouldn't be otherwise capable of handling. It improves the capabilities of HDMI and DisplayPort cables, letting them too, serve displays that are higher resolution and refresh rate than they are natively capable of doing. DSC does all this without almost anyone knowing. You've probably had it enabled without realizing it.

That's because DSC is a visually lossless compression format. While not mathematically lossless, you'd be very hard-pressed to see any kind of difference with DSC enabled. That's a good thing because it means that your 4K 240Hz monitor can handle all that data it needs without compromising on quality.

Read more
AMD FSR (FidelityFX Super Resolution): everything you need to know
amd radeon rx 6700 xt 12gb gddr6 vram

AMD's FidelityFX Super Resolution (FSR) is a supersampling feature available in a large swath of games. It has a simple goal: improving gaming performance on the best graphics cards. To help you understand how it works and why you should turn it on in your games, we rounded up everything you need to know about AMD FSR, including the newly announced FSR 3.

It works by rendering your game at a lower resolution, but the magic of FSR comes in the upscaling. It attempts to fill in missing details to make your game look like it's running at native resolution, just with a massive boost in performance. Here's all you need to know about it.
What is AMD FidelityFX Super Resolution?

Read more
Thunderbolt 4: everything you need to know
Dell XPS 13 2019 review (9380)

Thunderbolt 4 is the latest generation of Intel's Thunderbolt technology, and though it doesn't revolutionize the standard, it does shore it up in ways that make it far more of a high-performance guarantee than competing standards like USB4. However, the tech may not be all about raising the minimums. Intel has demonstrated Thunderbolt as being capable of far greater performance; it just hasn't implemented it yet.

Here's what you need to know about Thunderbolt 4 to make the most of this high-speed and high-performance connection standard.

Read more