Skip to main content

3D printing could help repair damaged knees with cartilage-mimicking hydrogel

3d printed cartilage knee implant
Wave a tentative goodbye to knee braces! Researchers from Duke University have created a new type of 3D bioprinting material they hope will one day be able to help form cartilage implants for patients with damaged knees.

“We’ve developed the first 3D-printable hydrogel that surpasses both the compression strength and elasticity of cartilage,” Feichen Yang, a researcher on the project, told Digital Trends. “This high strength makes it a good candidate for meniscus replacement.”

Related Videos

The work is described in a new paper published in the journal ACS Biomaterials Science and Engineering, which spells out how the cartilage-mimicking structures could be used to create customized implants on a patient-by-patient basis.

“The biggest challenge was to make the water-like precursors for the hydrogel 3D printable,” Yang continued. “To do this we added nanoclay to the gel precursors to make a solution that is shear-thinning. Shear-thinning means it flows easily when extruded through the nozzle, but after it exits the solution became so viscous it did not flow and could retain its printed shape.”

Another challenge was optimizing the mechanical strength of the gel, although after fine-tuning the finished gel matches the properties of bovine cartilage.

At present, the team members have demonstrated the feasibility of the 3D-printed material using a plastic knee model. In their demo, they scanned this model and then used their double-network hydrogel material to create a 3D model of the menisci. Impressively, the process took just one day to complete.

“One next step for this project could include using multi-materials 3D printers to 3D-print gels that have different elasticities in different positions, in order to better mimic the anisotropic nature of a natural meniscus,” Yang said. “Potentially in the future, an improved version of this material will [then] go through FDA testing procedures, and finally be used by medical surgeons.”

Editors' Recommendations

Wild new 3D printer makes parts by sending titanium particles supersonic
3D printing metal technique

Regular layer-by-layer 3D printing is old news compared to a new additive manufacturing technique developed by an international team of engineers. They recently demonstrated an innovative method for printing 3D metal objects by firing a powder that’s composed of tiny titanium particles, at supersonic speed, so that they fuse together in any interesting way.

This “cold spray” approach takes place below the melting temperature of the metal. When the particles hit the substrate at high enough velocity, they deform and adhere to it. The efficiency of this adhesion increases as the particle velocity increases. Without the high-speed impact, metal powders would simply not adhere well.

Read more
GPS-tracking, 3D-printed decoy eggs can help root out illegal poachers
Decoy turtle eggs

Poachers pose a major threat to sea turtle nests by stealing eggs to sell in what has become a rampant black market trade in certain parts of the world. Conservation efforts to stop this have, to date, included patrolling beaches for would-be poachers, as well as removing the eggs and placing them in a secure hatchery so that they can be incubated in safety.

Conservationists at the nonprofit organization Paso Pacifico in Nicaragua and researchers from the U.K.’s University of Kent have another idea, however -- and it involves 3D-printed decoy eggs, boasting built-in GPS trackers.

Read more
Printable wood biopaste could be the sustainable future of 3D printing
Biopaste 3D printing

Researchers at Germany’s University of Freiburg may have found a way to make 3D printing a bit more environmentally friendly -- by printing with a new material best described as a wood-based biopaste. After all, who needs boring, unsustainable plastics when you’ve got an alternative that works impressively well, made out of wood biopolymers cellulose and lignin?

Marie-Pierre Laborie, the lead researcher on the project, told Digital Trends that creating the printable material is straightforward. “We put each component, a cellulose-based derivative and lignin, into [a] solution and blend the two … to form a sort of paste of high-solid content,” Laborie said. “At [a] particular solid content and composition, we retain the lyotropic liquid crystalline behavior of the cellulose derivative. This facilitates the processing of the paste. The paste then solidifies thanks to the stabilizing effect of the lignin upon 3D printing.”

Read more