Skip to main content

Lab-grown capillaries are here, 3D-printed organs are just around the corner

For physicians, the dream of 3D printing is to one day be able to print functional tissues and organs for patients, made from their own cells. Doing this will allow a level of bespoke geometric customization and biochemical matching that will dramatically improve the quality of life of tens of thousands of people in need.

We have yet to reach that lofty goal but a new project carried out by researchers at Rice University and Baylor College of Medicine takes the dream one step closer to reality.

Recommended Videos

In a paper published in the journal Biomaterials Science, the researchers demonstrate a method of generating implantable tissues with functioning capillaries, the tiny blood vessels responsible for supplying the body with oxygen and other nutrients.

The demonstration involved using a combination of human endothelial cells and mesenchymal stem cells to initiate a process called tubulogenesis, that is a key element of the formation of said blood-transporting vessels.

“Here we are investigating tiny volumes of multicellular tissue, smaller than a raindrop,” Rice bioengineer Jordan Miller told Digital Trends. “But big things happen there. Endothelial cells are the cells lining all our blood vessels and they create our tiniest vessels: Capillaries. We studied these endothelial cells in natural and semi-synthetic materials that are compatible with 3D printing. We are optimizing the materials and cell formulations to get robust formation of tubules made entirely from the cells themselves.”

Gisele Calderon - Rice University 90 Second Thesis Competition

Miller says that 3D bioprinting has advanced dramatically over the past decade. However, there is still a big tradeoff that is difficult to avoid: An increase in 3D-printing resolution necessarily means a decrease in the total build volume. (Think of it like drawing a picture, where you can choose between spending your time adding detail to a small area, or sketching out a much larger image.)

“A 3D printer with a 1-micrometer resolution only has a cubic millimeter build volume, [which is] not big enough for much functional utility,” he continued. “So instead, we aim for 3D printers with about 50- to 200-micrometer resolution, and we want to work with these endothelial cells to make tiny capillaries that could eventually connect to larger vessels that we can readily 3D print. In that way, we would retain the build volume but still be able to develop nutrients to the smallest cell volumes. These findings will help cell biologist and bioengineers continue to make progress toward customized replacement organs.”

At present, Miller said the researchers are working to integrate their findings with this work into their existing work with 3D bioprinting. “Identifying materials formulations that work for 3D printing and that can simultaneously support robust capillary formation is the key to generating living tissues with multiscale vasculature spanning millimeters to microns,” he said.

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
AMD’s revolutionary 3D V-Cache chip could launch very soon
AMD Ryzen 5000G.

The launch of AMD's upcoming Ryzen 7 5800X3D processors is close, but a new leak tells us that it might be just a couple of weeks away.

According to a well-known source of hardware leaks, the processors have already started shipping. This indicates that they might hit the market by the end of this month. AMD estimates that its new processor could match up against the top chip from the Intel Alder Lake lineup.

Read more
AMD teases performance of its revolutionary 3D V-cache chip
AMD CEO holding 3D V-Cache CPU.

AMD is currently readying its new Ryzen 7 5800X3D, featuring a 3D V-cache, and it looks like we may soon have a powerful processor on our hands. AMD has teased that we can expect an up to 15% performance boost over the base Ryzen 7 5800X.

The tech giant talked about the new chip during the International Solid-State Circuits Conference (ISSSC) and revealed more information about its architecture. While the Ryzen 7 5800X3D will certainly be an improvement, will it be enough to compete with Intel's best processors?

Read more
Fighting football injuries with 3D-printed, hyper-personalized pads
The Protect3d 3D scanning process.

If you’ve ever watched a movie about sports, you’ve seen it. It's that moment that occurs two-thirds of the way into the story, when the protagonists’ inevitable victory suddenly seems a lot less certain. Maybe the inspirational mentor winds up in the ER, muttering motivational slogans from a hospital bed. Perhaps the unorthodox coach wins over the team, only to be fired by management for thinking too far outside the box. Possibly the star lacrosse player has a crisis of faith and realizes he wants to be an acapella singer rather than a jock.

 

Read more