Skip to main content

Digital Trends may earn a commission when you buy through links on our site. Why trust us?

How do 3D printers work? Here’s a super-simple breakdown

3D printing is everywhere these days. People use it to make everything from product prototypes to jet engines, and everything in between — but how do 3D printers work, exactly? How do these magical machines make three-dimensional objects — of virtually any shape — in a matter of hours? Well, if you’ve ever been curious about these things, you’re in luck. Here’s a dead-simple rundown of the four most common 3D-printing technologies in use today.

FDM

Fused Deposition Modeling (FDM)

Filament deposition modeling, also known as fused filament fabrication, is the most common type of 3D printing — at least on the consumer side of things. If you’ve seen a 3D printer in person before, chances are pretty good that it was an FDM printer.

Recommended Videos

Functionally speaking, your average FDM machine works a lot like a hot glue gun that’s being operated by a robot (interestingly enough, that’s actually how FDM was invented back in the 1980s!). Solid material goes in one end, gets pushed through a hot nozzle, melts, and is deposited in thin layers. This happens over and over until a three-dimensional object emerges. The only difference is that instead of glue, these 3D printers typically use a thermoplastic filament like ABS or PLA. These purposefully-engineered plastics are designed to melt and become liquid-like at a very specific temperature but return to a solid state after cooling down just a couple degrees.

In the simplest possible terms, FDM 3D printing is basically 2D printing over and over again. Each time a layer is completed, the nozzle moves up a little bit (or sometimes the bed moves down) and the next layer is printed on top of it. Eventually, after hundreds or even thousands of layers are stacked on top of each other, the result is a 3D object.

SLA/DLP

Stereolithography (SL / SLA)

SLA and DLP are two sides of the same coin. SLA (Stereolithography) and DLP (digital laser projection) both use light to “grow” objects in a pool of photoreactive resin. The difference is that SLA works by flashing a laser — a tiny dot of concentrated light — across a given area to harden it and create a layer. In contrast, DLP machines cure all areas of a layer simultaneously, by projecting light onto the resin in the shape of that layer.

Regardless of the technical specifics, though, SLA/DLP machines generally operate in a similar fashion. To start, the printer’s build plate is lowered into a pool of liquid resin, and stops just a fraction of a millimeter before reaching the bottom. This baseplate, by the way, is completely transparent — which allows light to shine up through the bottom. When this happens, any liquid resin that is directly struck by the light will solidify, thereby forming the first layer of an object and fusing it to the build plate. After that, the build plate moves up a few microns (which draws in more liquid resin beneath it), and the process begins again. In this fashion, objects are created layer by layer, from the bottom up.

SLS

Laser Sintering (LS / SLS)

SLS printing works very differently than FDM and SLA. To create an object, the machine flashes a laser over a bed of superfine powder, fusing the particles together to form a thin, solidified layer. The machine then sweeps more powder over the top of that layer (effectively burying it) and repeats the process until the print is complete.

Printing objects in this fashion has a number of distinct advantages. It works with a broad range of materials, can print large overhangs and spans without using support material, and the parts it produces are extremely high quality. SLS printers can make objects that are nearly as good as parts created through injection molding, milling, and other traditional manufacturing processes.

The only downside? SLS printers are outrageously expensive compared to their FDM and SLA/DLP counterparts. This is because high-energy lasers capable of fusing superfine particles together are, well, quite expensive to begin with. Generally speaking, even the cheapest SLS printers cost upward of $200,000 dollars — and the higher-end ones can easily cost millions. That said, there are a handful of companies currently working to democratize this technology and make it more accessible, so there is a chance that SLS printers might be available to hobbyists and consumers in the not-so-distant future.

Polyjet

PolyJet: 3D Printing

Think of polyjet printing as a magnificent hybrid between FDM, SLA printing, and normal 2D-inkjet printers. These machines squirt out tiny droplets of photo-reactive resin onto a build surface, and then immediately cure (harden) it with ultraviolet light. This process is then repeated hundreds (if not thousands) of times to create objects layer by layer. The big difference is that unlike FDM printers, polyjet machines can deposit material from multiple nozzles (hence the name) at once — which gives them a variety of advantages.

Arguably the biggest benefit of polyjet is that objects can be created with a wide range of different colors, gradients, and patterns. Many polyjet machines can also print with multiple materials simultaneously. For example, if you needed a cordless drill housing with a nylon body and a rubber grip, a sufficiently advanced polyjet machine could potentially fabricate that object in one printing session. On top of that, polyjet printers are also capable of extremely high resolutions — so much that it’s often hard to tell that an object produced in a high-end polyjet machine was 3D printed.

What can you make with a 3D printer at home, you ask? Here, check out some of the best and useful 3d printing ideas.

Drew Prindle
Former Senior Editor, Features
Drew Prindle is an award-winning writer, editor, and storyteller who currently serves as Senior Features Editor for Digital…
The Ioniq 5 is once again eligible for the $7,500 tax credit
2025 Hyundai Ioniq 5

After a brief and confusing absence, the Hyundai Ioniq 5 is once again eligible for the full $7,500 federal tax credit — and this time, it's sticking around (at least for now). So, what happened? Let’s unpack the ride.

The Ioniq 5, a sleek and tech-savvy electric crossover, initially made headlines not just for its design, but for being built at Hyundai’s brand-new Metaplant in Georgia. That domestic assembly qualified it for the EV tax credit under the Inflation Reduction Act (IRA), which requires vehicles to be made in North America with batteries sourced from trade-friendly countries. But early in 2025, the Ioniq 5 vanished from the list. Why? Likely due to its battery packs, which were then still being sourced from SK On’s Hungarian facility.

Read more
Sebastian Stan lays out Bucky’s future after Thunderbolts
Sebastian Stan in Thunderbolts.

There are some spoilers ahead for the ending of Marvel's Thunderbolts. Stop reading now if you don't want to be spoiled.

Earlier this year, Captain America: Brave New World briefly introduced a new direction for James "Bucky" Barnes, a character Sebastian Stan has been playing since 2011 in Captain America: The First Avenger. In Brave New World, the former Winter Soldier apparently retired from being a reformed hero and went into politics by running for Congress. Thunderbolts reveals that Bucky won his election to the House of Representatives. But his stay in Congress was short.

Read more
Jeep Compass EV breaks cover—but will it come to the U.S.?
jeep compass ev us newjeepcompassfirsteditionhawaii  4

Jeep just pulled the wraps off the all-new Compass EV, and while it’s an exciting leap into the electric future, there's a catch—it might not make it to the U.S. anytime soon.
This is a brand new electric version of the Jeep Compass, and being built on Stellantis' STLA platform—the same architecture underpinning models like the Peugeot E-3008 and E-5008—it looks much slicker and packs a lot more inside than previous versions of the Compass.
Let’s start with what’s cool: the new Compass EV is packing up to 404 miles of range on a single charge, a 74 kWh battery, and fast-charging that gets you from 20% to 80% in about 30 minutes. Not bad for a compact SUV with Jeep's badge on the nose.
There are two versions: a front-wheel-drive model with 213 horsepower and a beefier all-wheel-drive version with 375 horsepower. That AWD setup isn’t just for looks—it can handle 20% inclines even without front traction, and comes with extra ground clearance and better off-road angles. In short, it’s still a Jeep.
The design's been refreshed too, and inside you’ll find the kind of tech and comfort you’d expect in a modern EV—sleek, smart, and ready for both city streets and dirt trails.
But here’s the thing: even though production starts soon in Italy, Jeep hasn’t said whether the Compass EV is coming to America. And the signs aren’t promising.
Plans to build it in Canada were recently put on hold, with production now delayed until at least early 2026. Some of that might have to do with possible U.S. tariffs on Canadian and Mexican vehicles—adding a layer of uncertainty to the whole rollout.
According to Kelley Blue Book, a Stellantis spokesperson confirmed that the company has “temporarily paused work on the next-generation Jeep Compass, including activities at” the Canadian plant that was originally meant to build the model. They added that Stellantis is “reassessing its product strategy in North America” to better match customer needs and demand for different powertrain options.
So while Europe and other markets are gearing up to get the Compass EV soon, American drivers might be left waiting—or miss out entirely.
That’s a shame, because on paper, this electric Jeep hits a lot of sweet spots. Let’s just hope it finds a way over here.

Read more