Skip to main content

The latest wild idea for space exploration? Robots made from hunks of ice

IceBot's First Steps

“It was right around dawn on the frigid world of Enceladus, the sixth-largest moon of Saturn, when the ice robots began to stir. Receiving their marching orders from half a billion miles away, the frozen rovers twitched and hummed and cracked in temperatures hundreds of degrees below freezing point.

“These were not robots that had simply been covered in a thin layer of ice, like a car that’s been left out on a cold winter’s night. Instead, they were hewn almost exclusively out of great chunks of ice; giant, frozen sculptures that moved and probed the surface of one of the solar system’s most tantalizingly unexplored worlds, animated by the search for life.”

A dramatic, science fiction way to open an article about a new concept for building robots? Quite possibly. But if researchers from the GRASP Lab (that’s General Robotics, Automation, Sensing, and Perception) at the University of Pennsylvania in Philadelphia are correct, this may not remain science fiction for too much longer.

Heck, it could pretty soon fall under the category of common sense.

The trouble with Rover

Remote-controlled rovers have been used as part of space exploration going back decades. NASA included Lunar Roving Vehicles in three of its Apollo missions, starting with Apollo 15, which landed on the moon in July 1971. The Mars Exploration Rover Opportunity was in active service on red planet for a decade-and-a-half, from 2004 until early 2019.

But while these kinds of exploratory robots are built to be robust, there’s a limit to their survivability. The car-sized Curiosity picked up some severe tire damage while making its way across the martian surface, peppered as it is with sharp rocks. “If there were mechanics on Mars, NASA may have taken the Curiosity rover into the shop by now,” opined


Meanwhile, the long-running Opportunity mission went dark for good following an intense dust storm in 2018. This obscured its solar panels, leaving it to run out of battery. NASA clung on for another year before finally admitting the mission had come to an early, unceremonious end. Its identical twin, Spirit, was previously pronounced dead in 2011 after becoming stuck in Martian sand.

This is a problem because, while the robots may cost millions to make, they’re at the center of missions that can cost in the billions of dollars. If they suffer damage or technical misfortune, no matter if it’s just damaged tires or dust on the solar panels, it means that all the effort up until then — the construction process, the rocket launch, the landing — is for naught. It’s like having to abandon your new supercar for good at the side of the road because you’ve suffered a flat.

That’s why researchers want to build modular robots that can repair or otherwise augment themselves in scenarios where shipping in a replacement simply isn’t feasible from a cost and logistics perspective. They could even, in theory, build replicas of themselves or other robots entirely. To do this, they would utilize local materials — like, say, ice on an ice moon.

Enter IceBot

This is where the GRASP Lab’s IceBot project comes into the picture. “IceBot is a first-of-its-kind robot made from ice,” Devin Carroll, lead author on the project, told Digital Trends. “[In our new work, we present] a proof-of-concept, two-wheeled robot to show the feasibility of building robots from ice. Our intent with this technology is to advance the self-repair, self-reconfiguration, and self-replication capabilities of exploration robots. In making a robot like this, we are one step closer to a true self-replicating system – one that can use materials from the local environment to repair, augment, and replicate itself.”

(IROS 2020) Robots Made From Ice: An Analysis of Manufacturing Techniques

Carroll and collaborator Mark Yim began their project by exploring ways to build robots using found materials. This would help expand the robustness of such systems operating in distant or hostile locations by allowing them to recycle and reuse equipment that was found in the local environment.

“We chose to use ice as our primary building material because of its design flexibility,” Carroll continued. “Interest in icy environments is relatively high due to research relating to climate change, as well as extra-terrestrial exploration. Using ice as a building material allows us to repair the robot on the fly, extending the total operational life of the system as it collects data in these remote and harsh environments.”

This wouldn’t have to be somewhere as far-flung as Enceladus, of course. It could be somewhere closer to home, like Antarctica, where remote-controlled robots can also be useful for conducting research. In either case, when the elements begin to wear away or break down, new ones could be created as replacements, much in the same way that biological bodies can regenerate.

ice robot

The researchers have so far built a proof-of-concept demo robot that’s able to operate for periods in both room-temperature and subzero environments, traveling over hard rubber surfaces and climbing icy, inclined ramps. Along with the ice body, it utilizes an Arduino Micro microcontroller, Bluetooth module, and a few other manufactured components.

Still a long way to go

It’s still early days, however. Proving that a robot with a body made out of ice can function is one thing. But a big, and very difficult, part of the project — manufacturing the ice components autonomously — has yet to be demonstrated. The researchers are considering multiple approaches, including 3D printing, molding, and machining, each of which has its pros and cons.

“Our immediate goal is to design a module joint that will allow us to automate the assembly process,” Carroll said. “We will be able use automation to join our actuators with the ice rather than building the robot by hand. In conjunction with this, we are developing an end effector to manipulate blocks of ice without permanently deforming them, as would happen through the use of traditional fasteners like screws.”

ice robot

He continued: “An interesting design challenge we must solve with both of these directions is ensuring that we maximize the connection strength while the amount of energy used to join the components with the ice is minimized. In remote environments, energy is a valued commodity. Systems like IceBot will only be effective if we consider energy usage when designing them.”

Projects like this are only going to become more important. In the pioneer tradition, being able to utilize new, local materials for everything from growing food to building habitats is a crucial part of surviving — and thriving — in space. Robots that don’t have to be shipped, at vast expense, from Earth to wherever they need to go is one more piece of the puzzle.

A paper describing the IceBot project, titled “Robots Made From Ice: An Analysis of Manufacturing Techniques,” was recently presented at IROS (The International Conference on Intelligent Robotics and Systems) 2020.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Can Voyager 2, exploring space beyond the solar system, survive a power glitch?
In an artist's depiction, the Voyager 1 craft continues to cruise through interstellar space.

One of the most distant man-made objects in the universe, NASA's Voyager 2, has suffered a glitch that caused it to consume more power than expected. Launched in 1977, Voyager 2 has followed its sibling Voyager 1 out beyond the bounds of the solar system and into interstellar space.

The problem began on Saturday, January 25, when the Voyager 2 spacecraft was supposed to execute a scheduled rotation maneuver, in which it rolls over 360 degrees to calibrate its magnetic field instrument. But the craft didn't perform the maneuver, and two systems remained powered on longer than they should have, consuming more power than was intended.

Read more
Take a tour of the space station from the comfort of your own sofa
take a tour of the space station from comfort your own sofa iss

Astronauts from both the American and European space agencies have teamed up to offer us earthlings a unique tour of the International Space Station (ISS).

Shot in one take, ESA astronaut Luca Parmitano and NASA astronaut Drew Morgan spend just over an hour showing us around pretty much the entirety of the orbiting outpost.

Read more
Ballie is a rolling robot from Samsung that can help around the smart home
Samsung's ball-shaped robot, called Ballie.

It looks like a grapefruit. It rolls like a grapefruit. But it most certainly is not a grapefruit. It's Ballie, a new spherical robot from Samsung.

The new ball-shaped bot made its debut on the stage at Samsung’s CES event on Monday night, appearing alongside HS Kim, who leads the tech giant's consumer electronics unit.

Read more