How self-driving car tech could help forensic scientists find murder victims

Image used with permission by copyright holder

Lidar, the radar-style detection system which works by bouncing laser light, is most commonly associated with self-driving cars. However, it may have another useful, albeit morbid, application: Helping find bodies which have been buried in unmarked graves.

Sound like something out of an episode of CSI? In fact, it’s a new piece of research coming out of Tennessee’s Oak Ridge National Laboratory, where scientists have been investigating how lidar could be used a forensics tool to find missing murder victims — potentially even from an aircraft.

Recommended Videos

“Missing persons investigations pose a significant societal challenge, as well as a time-sensitive technological challenge,” Dr. Katie Corcoran, one of the researchers on the project, told Digital Trends. “Of the millions of missing persons worldwide who are unaccounted for, some are thought to be deceased and buried in unmarked graves. A gravesite can go unnoticed because of natural processes, where the site becomes covered with grass or leaves, for instance. Or the site could have been deliberately masked by a perpetrator trying to hide the body. In either case, the longer the gravesite goes unnoticed, the more difficult it is to locate.”

In the Oak Ridge researchers’ experiment, they used lidar to scan an area containing three human graves of various sizes (containing the buried corpses of individuals who had donated their bodies for research), alongside one control pit and surrounding undisturbed ground. They then compared the rates of surface elevation change, based on the data collected from each scan. This was done one day after the burial, four months after the burial, and 21 months after.

What they discovered was that the most obvious surface elevation changes are observed immediately after a grave is created, when it takes the form of loosened soil. However, these changes persist as the surface loses elevation during the period of body decomposition and soil settling. Although they may not be noticeable by the human eye, the changing ground elevations could nonetheless help narrow sites which could then be further examined by forensics crews.

“Our approach is intended to augment the grave discovery process, which may include other established methods such as pedestrian surveys, soil probing, and sampling, or ground-penetrating radar (GPR),” Corcoran continued. “Lidar is advantageous in that the visual results are more intuitive than GPR, a method commonly used for grave detection but notoriously difficult to interpret.”

A paper describing the work was recently published in the journal Forensic Science International.

Editors' Recommendations

I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
How GM’s Cruise self-driving cars navigate around double-parked vehicles

How Cruise Self-Driving Cars Navigate Double-Parked VehiclesFor self-driving cars, learning the rules of the road is just the beginning. Cars can be programmed to acknowledge stop signs and obey speed limits, but it's much harder to account for the unpredictability of human drivers. Double-parked cars are a common sight in most cities, so General Motors' Cruise autonomous-driving division is teaching its prototype self-driving cars how to navigate around them.

Before it can do anything, a self-driving car needs to figure out whether a vehicle in front of it is double parked. To do this, the car can use "contextual cues," such as the appearance of hazard lights, or the amount of time a vehicle has been stationary, according to a Cruise blog post. Self-driving cars can also recognize if the vehicle in front is a type that tends to double park frequently, such as a delivery truck. Cruise's cars rely on cameras, radar, and lidar to "see" what's around them, and machine learning to synthesize information into a conclusion. Human beings do this all the time, but it's something autonomous cars must be painstakingly taught.

Read more
Uber’s earnings report could give a clearer picture on self-driving cars

With Uber set to release its first earnings report as a publicly-traded company Thursday afternoon, expect to see some updates on the company's troubled self-driving car program.

Uber suspended the program in March 2018 following a fatal accident involving one of its prototypes. In December, the company announced that it was ready to resume testing its autonomous technology on public roads, and it pledged to put a bigger focus on safety than ever before.

Read more
Digital Trends’ Tech For Change CES 2023 Awards

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more