Skip to main content

Genetically engineered bacteria could be the key to mass-produced spider silk

spider silk nasa
pbombaert/Getty Images

As materials go, spider silk is pretty darn interesting. With its combination of tensile strength, toughness, and ductility, it’s one of nature’s most impressive inventions. It’s incredibly versatile, too. We might be used to spider silk being employed by, well, spiders to trap prey, line nests, or create alarm lines, but there are plenty of applications in the human-sized world, too. These include lightweight bulletproof shields, ultrathin medical sutures, high-strength safety belts, and plenty more.

Unfortunately, there’s a problem. Spider silk isn’t easy to farm and, while spiders produce impressive quantities of it relative to their size, that’s still a tiny amount in our terms. It’s not easy to set up spider farms to farm it in bulk either. That’s because some species of spider can turn cannibalistic when they’re kept in groups. As a result, many scientists and other researchers are left positing the amazing potential uses of spider silk, but with few practical ways of putting these into action. Other attempts to try and produce spider silk minus the spiders (using everything from yeast to goats) have been unable to match the spectacular qualities of the real thing. Where’s Spider-Man when you need him?

Fortunately, things may be changing. Researchers from Washington University in St. Louis have demonstrated a new way to create spider silk in the lab — in a way that could prove to be highly reproducible. Their work was presented this week at the American Chemical Society (ACS) Spring 2019 National Meeting & Exposition.

Christopher Bowen

“We created synthetic spider silk by optimizing a synthetic DNA sequence to encode a high molecular weight spider silk protein and engineering bacteria to facilitate its overproduction,” Fuzhong Zhang, lead researcher on the project, told Digital Trends.

It sounds (and is) fairly complex, but it could also be a game changer. The team essentially figured out how to genetically edit bacteria to create super-strong spider silk. This involved dividing spider silk genes into smaller pieces, which were then reassembled after being integrated into a bacterial genome. The resulting microbially produced spider silk matched the properties of natural spider silk in everything from its stronger-than-steel strength to its stretchability. So far, the researchers have been able to use the technique to obtain up to 2 grams of silk per liter of bacterial culture. They hope to increase this yield in the future.

“The next step is to make the bioproduction process more scalable and more economically competitive,” Zhang said.

Should all go according to plan, NASA is hoping that spider silk could turn out to be a useful material to have on missions.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Synthetic spider silk could help solve the world’s plastic pollution problems
plastic pollution

There’s no doubt that Earth has a plastic problem. The total amount of plastic thrown away each year is enough to circle the Earth four times. Americans alone throw away some 35 billion plastic bottles every 12 months. Could spider silk help?

That might sound like a non-sequitur, but it doesn’t have to remain that way. In Finland, researchers from Aalto University and the VTT Technical Research Center have developed a new nature-inspired material which could one day be used to replace nondegrading plastics. The material, which possesses firm and resilient properties similar to plastic, is made from wood cellulose fibers and the silk protein found in spider web threads.

Read more
Bacteria could help mass-produce wonder material graphene at scale
university exeter graphene optoelectronics

There’s no doubting that graphene, a single layer of graphite with the atoms arranged in a honeycomb hexagonal pattern, is one of science’s most versatile new materials. Capable of doing everything from filtering the color out of whisky to creating body armor that’s stronger than diamonds, graphene exhibits some truly unique qualities. However, while some mainstream uses of graphene have emerged, its use remains limited due to the challenge of producing it at scale. The most common way to make graphene still involves using sticky tape to strip a layer of atoms off ordinary graphite.

That’s something that researchers from the University of Rochester and the Netherlands’ Delft University of Technology have been working to change. They’ve figured out a way to mass produce graphene by mixing oxidized graphite with bacteria. Their method is cost-efficient, time-efficient, and sustainable -- and may just make graphene a whole lot more available in the process.

Read more
Your smartphone could be the key to predicting natural disasters
atmospheric science smartphone iot 203650 web 1

Wireless communication links, social networks, and smartphones as examples of data-generating sources that can be harnessed for environmental monitoring. Noam David

One of the challenges for atmospheric scientists is gathering enough data to understand the complex, planet-wide weather system. As atmospheric changes in one location can have profound effects on the climate in far away regions, it's hard for researchers working in any one place to get all the information they need to make inferences about weather patterns.

Read more