Skip to main content

LTE vs. 4G: The differences explained

When it comes to wireless broadband standards, there are many acronyms to keep track of. However, few are more important than LTE and 4G. Knowing the difference between 4G and LTE (and now 5G) might give you a better basis of knowledge when you upgrade your phone or cell carrier. The discussion below outlines the basics.

Related reads

The simplest explanation is that the “G” in 4G stands for “generation,” because 4G is the fourth generation of mobile data technology, as defined by the radio sector of the International Telecommunication Union (ITU-R). LTE stands for “Long-term Evolution” and applies more generally to the idea of improving wireless broadband speeds to meet increasing demand.

What is 3G?

When 3G networks started rolling out commercially, at or around 2002, they replaced the 2G system, a network protocol that only allowed the most basic of what we now call smartphone functionality. Most 2G networks handled phone calls, basic text messaging, and small amounts of data over a protocol called MMS. With the introduction of 3G connectivity, a number of larger data formats became much more accessible, including standard HTML pages, videos, and music. The speeds were still pretty slow, and mostly required pages and data specially formatted for slower wireless connections. Compared with 2G standards, the new protocol was speedy, but still didn’t come anywhere close to replacing a home broadband connection.

What is 4G?


The ITU-R set standards for 4G connectivity in March 2008, requiring all services described as 4G to adhere to a set of speed and connection standards. For mobile use, including smartphones and tablets, connection speeds need to have a peak of at least 100 megabits per second, and for more stationary uses such as mobile hot spots, at least 1 gigabit per second.

When these standards were announced, these speeds were unheard of on the ground, because they were intended as a target for developers, an aspirational point in the future that marked a significant jump over the current technology. Over time, the systems that power these networks caught up, not just in the sense that new broadcasting methods have found their way into products, but that previously established 3G networks were improved to the point that they can be classified as 4G.

What is LTE?

LTE stands for Long-term Evolution, and isn’t as much a technology as it is the path followed to achieve 4G speeds. For a long time, when your phone displayed the “4G” symbol in the upper right corner, it wasn’t precisely accurate. When the ITU-R set the minimum speeds for 4G, they were mostly unreachable, despite the amount of money tech manufacturers put into achieving them. In response, the regulating body decided that LTE, the name given to the technology used in pursuit of those standards, could be labeled as 4G if it provided a substantial improvement over the 3G technology.

What is 4G LTE?

Almost immediately, networks began advertising their connections as 4G LTE, a marketing technique that allowed them to claim next-gen connectivity without having to reach the actual required number first. It’s not entirely trickery though, despite inconsistent speeds depending on location and network, the difference between 3G and 4G is obvious.

To make matters more confusing, you might have come across LTE-A. This stands for Long-term Evolution Advanced, and it took us a step closer to actual 4G. It offers faster speeds and greater stability than normal LTE. It’s also backward compatible and works by aggregating channels, so instead of connecting to the strongest signal in your vicinity, you can download data from multiple sources at the same time. LTE standardization has now advanced to where changes in the specs are confined to corrections and bug fixes.


So, can you feel the difference between 4G and LTE networks? Is the speed of loading a page or downloading an app on your device noticeably faster if you have LTE technology built in? Maybe — if you are in the right location. While the difference between slower 3G networks and new 4G or LTE networks is quite noticeable, many of the 4G and “true 4G” networks have nearly identical upload and download speeds. The rollout of LTE-A made a difference for some customers, but mileage may vary.

LTE-A was the fastest connection available for wireless networks for a while, but 5G networks are increasingly popular in more locations. Not only that, but the newest smartphones on the market — now feature 5G. So, 4G is becoming less and less relevant.

Required resources

Apple iPhone 12 mini
Andrew Martonik/Digital Trends

Creating 4G connectivity requires two components: A network that can support the necessary speeds, and a device that can connect to that network and download information at a high enough speed. Just because a phone offers 4G LTE connectivity inside doesn’t mean you can get the speeds you want, in the same way that buying a car that can drive at 200 mph doesn’t mean you can go that fast on a 55 mph freeway.

Before carriers were able to truly offer LTE speeds in major areas, they were selling phones that had the capabilities they would need to reach the desired speeds, and they started rolling out the service on a limited scale afterward. Today, LTE service is widespread.

Packet-switching and circuit-switching

Network speed test

No matter what the data is or how fast it’s being transferred, it needs to be packaged and sent so other points on the network can interpret it. Older networks use circuit-switching technology, a term that refers to the method of communicating. In a circuit-switching system, a connection is established directly to the target through the network, and the entirety of the connection, whether it’s a phone call or a file transfer, happens through that connection. The advantages of a circuit-switched network include a faster connection time and less chance of the connection dropping.

Newer networks take advantage of packet-switching technology, a modern protocol that can leverage the much larger number of connected points across the globe. In a packet-switching network, information is broken up into small chunks which are then sent to their destination over whatever path is currently the most efficient. If a node drops out of your connection in the circuit-switching networks, you must reconnect, but in a packet-switching network, the next packet will simply hunt for a different path.

Most of 4G speed’s technology has zero to do with voice communication. Voice networks still use circuit-switching technology, so accommodating disparities between earlier and more modern network types is crucial. Voice networks took multiple actions to address this, and many carriers employ one of two choices that secured their control over the minutes used.

Carriers do this in a few different ways, allowing the phone to revert to circuit-switching standards for calling. Another way they do this is by using packet-switching communication for data and circuit-switching for voice concurrently. A final option is to just run the voice audio as data over the new LTE networks. Lots of companies refrain from using this option because it reduces their ability to charge for voice minutes. Voice over LTE (VoLTE) exists when you make a video call connection with another person using high-resolution audio and super-fast connection speeds. Nowadays, VoLTE and Wi-Fi calls have become more popular, and these options will only continue to grow and impact more of our daily lives.

Has 5G taken over?

Verizon 5G node
Julian Chokkattu/Digital Trends

After years of anticipation, 5G is finally becoming the norm, available on new flagship phones like the iPhone 13 and Pixel 6. Many manufacturers have introduced 5G-capable smartphones, and major carriers like Verizon, T-Mobile, and AT&T are continuously developing and improving their 5G networks. Still, the gap between 5G and LTE right now is not as big as it may appear. As with other protocols, 4G and 5G will coexist for a while.

Editors' Recommendations

The best smartwatches in 2023: our 11 favorite picks
Apple Watch Series 7 next to the Samsung Galaxy Watch 5.

Smartwatches allow us to live like Dick Tracy by giving us notifications, health/fitness tracking, the ability to send and receive calls and messages, play music, set timers, and do various tasks via voice command, and so much more — all on our wrists. It truly is a great time to be alive, because smartwatches just keep getting better and better. But what are the best smartwatches?

For most people, we think the Apple Watch Series 8 is the best smartwatch, especially if you are already an Apple user with an iPhone. But we know that not everyone uses an iPhone, because there are a ton of Android phones out there, and Apple Watches only work with iPhones, unfortunately. Still, there are plenty of Android smartwatches out there as well (and many of these work on either platform), so there's something for everyone.

Read more
The best tablets in 2023: top 9 picks you should buy
Disney+ app on the iPad Air 5.

As much as we love having the best smartphones in our pockets, there are times when those small screens don't cut it, and we just need a larger display. That's when you turn to a tablet, which is great for being productive on the go and can be a great way to unwind and relax too. While the tablet market really took off after the iPad, it has grown to be quite diverse with a huge variety of products — from great budget options to powerhouses for professionals.

We've tried out a lot of tablets here at Digital Trends, from the workhorses for pros to tablets that are made for kids and even seniors, there's a tablet for every person and every budget. For most people, though, we think Apple's iPad Air is the best overall tablet — especially if you're already invested in the Apple ecosystem. But if you're not an Apple user, that's fine too; there are plenty of other great options that you'll find in this roundup.

Read more
Apple cracks down on ChatGPT apps with harsh age ratings
App Store on-screen illustration

Apple is in a deadlock with email app BlueMail over its decision to give the app's latest update an age restriction of 17 and older due to its ChatGPT integration.

Apple is currently blocking the update because the app's developer Blix Inc. disagrees with the company's stance to give BlueMail an age restriction, having rejected the brand's update application last week, according to the Wall Street Journal.

Read more