Skip to main content

Could there be microbial life in the ocean of Saturn’s moon Enceladus?

An artist's impression depicts NASA's Cassini spacecraft flying through a plume of presumed water erupting from the surface of Saturn's moon Enceladus.
This artist’s impression depicts NASA’s Cassini spacecraft flying through a plume of presumed water erupting from the surface of Saturn’s moon Enceladus. NASA

When it comes to searching for potentially habitable places in our solar system, one of the top targets is Saturn’s moon Enceladus. From a distance, the moon appears to be slick and shiny, covered in a thick layer of ice. But scientists believe there is an ocean beneath this ice crust that could potentially be capable of supporting life.

One of Enceladus’s most intriguing features is the huge plumes of water that periodically erupt from its surface. They give evidence about what the ocean beneath the ice may be like, and by flying through these plumes and taking samples, the Cassini spacecraft was able to determine that the plumes had concentrations of dihydrogen, methane, and carbon dioxide. These chemicals are also found in the hydrothermal vents on Earth’s ocean floor — and as these vents are known to host life, scientists have wondered if Enceladus’s ocean might be able to as well.

“We wanted to know: Could Earthlike microbes that ‘eat’ the dihydrogen and produce methane explain the surprisingly large amount of methane detected by Cassini?” said lead author of the study, Régis Ferrière, associate professor in the University of Arizona Department of Ecology and Evolutionary Biology. “Searching for such microbes, known as methanogens, at Enceladus’ seafloor would require extremely challenging deep-dive missions that are not in sight for several decades.”

As the researchers couldn’t send a mission there themselves, instead they used mathematical modeling to determine whether the conditions observed on Enceladus could be consistent with the presence of microbial life. They found that the data collected by Cassini could be explained by microbial vent activity similar to that on Earth’s ocean floor. Or it could be explained by a different process that doesn’t involve life — but it would have to be different from anything here on Earth.

So that doesn’t mean there is life on Enceladus, but it means that there could be. The current data shows a definite possibility that the ocean is habitable.

“Obviously, we are not concluding that life exists in Enceladus’ ocean,” Ferrière said. “Rather, we wanted to understand how likely it would be that Enceladus’ hydrothermal vents could be habitable to Earthlike microorganisms. Very likely, the Cassini data tell us, according to our models.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Saturn’s tiny moon, Mimas, hosts an unexpected ocean beneath an icy shell
An illustration of Mimas orbiting Saturn.

When looking for places that could potentially harbor life in our solar system, astronomers are increasingly interested in some of the moons of large gas giant planets. Saturn's moon Enceladus and Jupiter's moon Europa, for example, are both top targets of habitability research because even though they are far from the sun, they are thought to host liquid water oceans beneath a thick, icy crust. Now, a new moon may join these ranks, as researchers have found evidence of an ocean beneath the icy shell of Saturn's small moon Mimas.

Mimas film

Read more
NASA launches PACE satellite to observe Earth’s oceans and atmosphere
NASA’s Plankton, Aerosol, Climate, ocean Ecosystem (PACE) satellite launched aboard a SpaceX Falcon 9 rocket at 1:33 a.m. EST, Feb. 8, 2024, from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. From its orbit hundreds of miles above Earth, PACE will study microscopic life in the oceans and microscopic particles in the atmosphere to investigate key mysteries of our planet’s interconnected systems.

NASA has launched its latest Earth-monitoring mission, a satellite that studies the atmosphere and the oceans and their relationship to climate change. The Plankton, Aerosol, Climate, ocean Ecosystem (PACE) mission launched at 1:33 a.m. ET on Thursday, February 8, from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.

NASA’s Plankton, Aerosol, Climate, ocean Ecosystem (PACE) satellite launched aboard a SpaceX Falcon 9 rocket at 1:33 a.m. ET, February 8, 2024, from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. NASA

Read more
How to watch NASA launch its newest ocean and atmosphere observation satellite tonight
A SpaceX Falcon 9 rocket with NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) spacecraft encapsulated atop is raised to a vertical position at Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida on Monday, Feb. 5, 2024. Liftoff of the PACE mission is set for no earlier than 1:33 a.m. EST on Tuesday, Feb. 6, 2024.

Although NASA is most often associated with sending missions out to observe space, the agency also has a large number of space missions that turn the other way to observe Earth. The newest mission to observe Earth's atmosphere and oceans, and to provide insight into how these interact with the changing climate, is set for launch early Eastern time on Tuesday, February 6 .

Launch of Mission to Study Earth's Atmosphere and Oceans (Official NASA Broadcast)

Read more