Skip to main content

Exoplanets could be made of diamonds, unlike anything in our solar system

As telescopes become more powerful and techniques for detecting distant exoplanets become more sophisticated, astronomers continue to discover strange and bizarre worlds that seem like something out of science fiction. There are planets with iron rain or with yellow skies, those shaped like a football or where a year lasts just a week.

Now, in a concept straight out of a dream, new research shows that our universe could host planets made of diamonds.

Recommended Videos

Researchers at Arizona State University looked at a specific type of planet which is high in carbon. Most planets are formed from the same cloud of gas which formed their stars, and therefore have similar composition. So you end up with planets like Earth which has a low ratio of carbon to oxygen, making diamonds (which are composed of carbon) a relative rarity.

Please enable Javascript to view this content

But other planets form around stars with different compositions, where the ratio of carbon to oxygen is much higher. The researchers wanted to know what would happen inside these planets, so they pressed samples of silicon carbide between diamonds in water and exerted massive pressure on them. The silicon carbide reacted with the water and turned into diamond and silica as well.

This means that if water were present on these carbon-rich planets, that carbon could be converted to diamond and silicate, meaning the inside of the planets would be rich in diamonds. “These exoplanets are unlike anything in our solar system,” lead author Harrison Allen-Sutter of Arizona State University’s School of Earth and Space Exploration said in a statement.

llustration of a carbon-rich planet with diamond and silica as main minerals.
Illustration of a carbon-rich planet with diamond and silica as main minerals. Water can convert a carbide planet into a diamond-rich planet. In the interior, the main minerals would be diamond and silica (a layer with crystals in the illustration). The core (dark blue) might be an iron-carbon alloy. Shim/ASU/Vecteezy

There is a downside to the glittering promise of a diamond planet, however — the interior of these planets would be so hard that they couldn’t be geologically active, and therefore couldn’t create an atmosphere and couldn’t support life.

Even so, finding these planets could be a boon for scientific knowledge. “Regardless of habitability, this is one additional step in helping us understand and characterize our ever-increasing and improving observations of exoplanets,” said Allen-Sutter.

“The more we learn, the better we’ll be able to interpret new data from upcoming future missions like the James Webb Space Telescope and the Nancy Grace Roman Space Telescope to understand the worlds beyond our own solar system.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
First indications of a rare, rainbow ‘glory effect’ on hellish exoplanet
For the first time, potential signs of the rainbow-like ‘glory effect’ have been detected on a planet outside our Solar System. Glory are colourful concentric rings of light that occur only under peculiar conditions. Data from ESA’s sensitive Characterising ExOplanet Satellite, Cheops, along with several other ESA and NASA missions, suggest this delicate phenomenon is beaming straight at Earth from the hellish atmosphere of ultra-hot gas giant WASP-76b, 637 light-years away.

Just from looking at our own solar system, we can see that planets come in a wide variety of colors -- from the dusty red of Mars to the bright blues of Uranus and Neptune. Planets like Jupiter have beautiful bands of color caused by variations in the atmosphere, while it's hard to even see the surface of Venus because its atmosphere is so thick. But there are other variations in color which planets can display, like a stunning rainbow-hued set of circular rings called a glory.

Glories are observed on Earth, and have been seen just once on another planet, Venus. But now, researchers believe they may have identified a glory on a planet outside our solar system for the first time. The extreme exoplanet WASP-76b could be host to the first known extrasolar glory, observed by the European Space Agency (ESA)'s Characterising ExOplanet Satellite (Cheops).

Read more
Asimov’s vision of harvesting solar power from space could become a reality
Simplified diagram of space solar power concept..

It's an idea straight out of science fiction: A space station orbits around Earth, harvesting energy from the sun and beaming it down to our planet. Isaac Asimov popularized the concept in his 1941 story Reason, and futurists have been dreaming about it ever since.

But this notion is more than just an idle fantasy -- it's a highly practical concept being pursued by space agencies across the world, and it's almost within reach of current technologies. It could even be the solution to the energy crisis here on Earth.

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more