Skip to main content

James Webb Space Telescope powers on its instruments in Ground Segment Test

NASA’s upcoming James Webb Space Telescope has run into its share of problems during its development process, but now it has reached a milestone with the completion of the “Ground Segment Test.”

This test involved sending commands to power on the scientific instruments aboard the James Webb for the first time, ensuring that ground control personnel at NASA will be able to control the telescope once it is in orbit.

“This was the first time we have done this with both the actual Webb flight hardware and ground system,” Amanda Arvai, deputy division head of mission operations at the Space Telescope Science Institute (STScI) in Maryland said in a statement.

“We’ve performed pieces of this test as the observatory was being assembled, but this is the first ever, and fully successful, end-to-end operation of the observatory and ground segment. This is a big milestone for the project, and very rewarding to see Webb working as expected.”

Now that the observatory has been completely assembled, Webb teams are running full observatory level tests to ensure it is prepared for the rigors of liftoff.
Now that the observatory has been completely assembled, Webb teams are running full observatory level tests to ensure it is prepared for the rigors of liftoff. NASA/Chris Gunn

The test required over 100 people, most working remotely, and took four days. It consisted of turning on, moving, and operating the telescope’s four instruments: The Near-Infrared Camera, the Near-Infrared Spectrograph, the Mid-Infrared Instrument, and the Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph.

“This was also the first time we’ve demonstrated the complete cycle for conducting observations with the observatory’s science instruments,” Arvai said.

“This cycle starts with the creation of an observation plan by the ground system which is uplinked to the observatory by the Flight Operations Team. Webb’s science instruments then performed the observations and the data was transmitted back to the Mission Operations Center in Baltimore, where the science was processed and distributed to scientists.”

The engineers wanted to simulate the communications conditions of the telescope being in space and being controlled from the ground, so they sent the commands via NASA’s Deep Space Network. Once the telescope is in orbit, commands will be relayed using the network which has locations in California, Spain, and Australia to ensure that communication with space-based instruments can continue as the Earth rotates.

Testing of the James Webb will continue with acoustic and sine-vibration testing which simulate the challenging conditions of a launch, and the launch itself is scheduled for October 31, 2021.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures a gorgeous stellar nursery in nearby dwarf galaxy
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. This image includes 7.7-micron light shown in blue, 10 microns in cyan, 11.3 microns in green, 15 microns in yellow, and 21 microns in red (770W, 1000W, 1130W, 1500W, and 2100W filters, respectively).

A gorgeous new image from the James Webb Space Telescope shows a stunning sight from one of our galactic neighbors. The image shows a region of star formation called NGC 346, where new stars are being born. It's located in the Small Magellanic Cloud, a dwarf galaxy that is a satellite galaxy to the Milky Way.

The star-forming region of the Small Magellanic Cloud (SMC) was previously imaged by the Hubble Space Telescope in 2005, but this new image gives a different view as it is taken in the infrared wavelength by Webb instead of the optical light wavelength used by Hubble.

Read more
Zoom into an incredibly detailed James Webb image of the Orion nebula
A short-wavelength NIRCam mosaic of the inner Orion Nebula and Trapezium Cluster.

A new image from the James Webb Space Telescope shows the majesty of the gorgeous Orion nebula in tremendous detail. The European Space Agency (ESA) has shared an extremely high-resolution version of the image that you can zoom into to see the details of this stunning cloud of dust and gas which hosts sites of star formation where new stars are being born.

The full image is available to view in the ESASky application, where you can zoom in a compare images of the same target taken in different wavelengths. There's also a very large version of the image if you want to download and pursue it at your leisure.

Read more
Swatch lets you put a stunning Webb space image on a watch face
New Swatch designs featuring images captured by the James Webb Space Telescope.

Space fans have been marveling at the stunning images beamed to Earth by the James Webb Space Telescope ever since it went into operation last year.

The most powerful space telescope ever built is using its near-infrared camera (NIRCam) to peer deeper into space than ever before, with scientists hoping that its discoveries could help unlock some of the mysteries of the universe.

Read more