Skip to main content

James Webb Space Telescope powers on its instruments in Ground Segment Test

NASA’s upcoming James Webb Space Telescope has run into its share of problems during its development process, but now it has reached a milestone with the completion of the “Ground Segment Test.”

This test involved sending commands to power on the scientific instruments aboard the James Webb for the first time, ensuring that ground control personnel at NASA will be able to control the telescope once it is in orbit.

“This was the first time we have done this with both the actual Webb flight hardware and ground system,” Amanda Arvai, deputy division head of mission operations at the Space Telescope Science Institute (STScI) in Maryland said in a statement.

“We’ve performed pieces of this test as the observatory was being assembled, but this is the first ever, and fully successful, end-to-end operation of the observatory and ground segment. This is a big milestone for the project, and very rewarding to see Webb working as expected.”

Now that the observatory has been completely assembled, Webb teams are running full observatory level tests to ensure it is prepared for the rigors of liftoff.
Now that the observatory has been completely assembled, Webb teams are running full observatory level tests to ensure it is prepared for the rigors of liftoff. NASA/Chris Gunn

The test required over 100 people, most working remotely, and took four days. It consisted of turning on, moving, and operating the telescope’s four instruments: The Near-Infrared Camera, the Near-Infrared Spectrograph, the Mid-Infrared Instrument, and the Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph.

“This was also the first time we’ve demonstrated the complete cycle for conducting observations with the observatory’s science instruments,” Arvai said.

“This cycle starts with the creation of an observation plan by the ground system which is uplinked to the observatory by the Flight Operations Team. Webb’s science instruments then performed the observations and the data was transmitted back to the Mission Operations Center in Baltimore, where the science was processed and distributed to scientists.”

The engineers wanted to simulate the communications conditions of the telescope being in space and being controlled from the ground, so they sent the commands via NASA’s Deep Space Network. Once the telescope is in orbit, commands will be relayed using the network which has locations in California, Spain, and Australia to ensure that communication with space-based instruments can continue as the Earth rotates.

Testing of the James Webb will continue with acoustic and sine-vibration testing which simulate the challenging conditions of a launch, and the launch itself is scheduled for October 31, 2021.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere
This illustration conceptualises the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day.

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities -- like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

Read more
Astronomers share early images from James Webb’s galaxy survey
Images of four example galaxies selected from the first epoch of COSMOS-Web NIRCam observations, highlighting the range of structures that can be seen. In the upper left is a barred spiral galaxy; in the upper right is an example of a gravitational lens, where the mass of the central galaxy is causing the light from a distant galaxy to be stretched into arcs; on the lower left is nearby galaxy displaying shells of material, suggesting it merged with another galaxy in its past; on the lower right is a barred spiral galaxy with several clumps of active star formation.

One of the major aims of the James Webb Space Telescope is to observe some of the earliest galaxies in the universe, and to do that it needs to be able to see extremely distant objects. But looking at a particular very old galaxy in detail is only half of the problem. To truly understand the earliest stages of the universe, astronomers also need to see how these very old galaxies are distributed so they can understand the large-scale structure of the universe.

That's the aim of the COSMOS-Web program, which is using James Webb to survey a wide area of the sky and look for these rare, ancient galaxies. It aims to study up to 1 million galaxies during over 255 hours of observing time, using both Webb's near-infrared camera (NIRCam) and its mid-infrared instrument (MIRI) camera. While there is still plenty of observing left to do, the researchers in the COSMOS-Web program recently shared some of their first results.

Read more
How James Webb is peering into galaxies to see stars being born
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds.

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

Read more