Skip to main content

This exoplanet whizzes around its star once a week and is bombarded by flares

NASA’s TESS, Spitzer Missions Discover World Orbiting Unique Young Star

Around 32 light-years away from Earth, practically in our backyard, lies a dramatic young star named AU Microscopii or AU Mic for short. This star is just 20 to 30 million years old. This might sound ancient, but by star standards, it’s a baby — for reference, our sun is 150 times older.

Orbiting this baby star is a planet of dramatic events, AU Mic b, recently discovered using data from NASA’s Transiting Exoplanet Survey Satellite (TESS) and the now-retired Spitzer Space Telescope.

A year on this Neptune-sized planet lasts just over one Earth week as it orbits extremely close to its star. And it is constantly bombarded with flares from the star, caused by the star’s strong magnetic fields. The star is often covered with starspots — similar to sunspots — which erupt with flares that bathe the planet in radiation.

rendering of the young planet AU Mic b
This rendering of the young planet AU Mic b is part of NASA’s fun-but-informative Galaxy of Horrors poster series. The planet’s star, AU Microscopii, emits powerful, fiery flares that would likely terrorize any lifeforms that tried to make a home here. NASA's Exoplanet Exploration Program

Because the star AU Mic is so young, both it and its planet are still surrounded by the disk of dust and gas from which they formed. That makes this system the ideal place for researchers to observe to understand more about how planetary systems develop over time.

“We think AU Mic b formed far from the star and migrated inward to its current orbit, something that can happen as planets interact gravitationally with a gas disk or with other planets,” coauthor Thomas Barclay, associate project scientist for TESS at NASA’s Goddard Space Flight Center, explained in a statement.

artist's concept shows the dusty disk surrounding the star AU MIcroscopii
This artist’s concept shows the dusty disk surrounding the star AU MIcroscopii. Astronomers have studied this system extensively but only recently identified the presence of a planet there. The find provides a laboratory for studying planet evolution and formation. NASA's Goddard Space Flight Center/Chris Smith (USRA)

Barclay and his team have also compared the system to planets in another nearby system, the Beta Pictoris Moving Group. “By contrast, Beta Pictoris b’s orbit doesn’t appear to have migrated much at all. The differences between these similarly aged systems can tell us a lot about how planets form and migrate,” he said.

There may even be more planets hiding in the orbit of AU Mic, so the scientists will return to this system to study it more and see if they can find them.

“There is an additional candidate transit event seen in the TESS data, and TESS will hopefully revisit AU Mic later this year in its extended mission,” lead researcher Peter Plavchan said. “We are continuing to monitor the star with precise radial velocity measurements, so stay tuned.”

The research is published in the journal Nature.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA’s exoplanet hunting satellite is back up and running
nas tess satellite begins exoplanet hunt orbits planet

NASA's Transiting Exoplanet Survey Satellite (TESS), a space-based exoplanet hunter, has resumed operations following a technical issue that caused it to be put into safe mode earlier this week.

The issue began on Wednesday, October 12, when a problem with the satellite's computer arose. "The spacecraft is in a stable configuration that suspends science observations. Preliminary investigation revealed that the TESS flight computer experienced a reset," NASA wrote in an update at the time. "The TESS operations team reported that science data not yet sent to the ground appears to be safely stored on the satellite. Recovery procedures and investigations are underway to resume normal operations, which could take several days."

Read more
James Webb snapped a picture of an exoplanet for the first time
webb exoplanet direct detection exo image unlabeled 1

The James Webb Space Telescope has directly imaged an exoplanet for the first time. This is exciting because it is very rare for exoplanets to be directly imaged, as usually, their existence has to be inferred from other data. By taking an image of a planet outside our solar system, Webb demonstrates how we'll be able to gather more information than ever before about distant worlds.

There are over 5,000 known exoplanets, but the vast majority of these have been detected using techniques like the transit method, in which the light from a host star dips slightly when a planet passes in front of it, or radial velocity, in which a star is slightly tugged around by the gravity of a planet. In these methods, the existence of a planet is inferred because of the effect that can be observed on a star, so the planet itself isn't directly observed. In rare cases, however, an exoplanet can be observed directly, particularly if it is a large planet located relatively nearby.

Read more
Intriguing exoplanet could be entirely covered in ocean
Artistic rendition of the exoplanet TOI-1452 b, a small planet that may be entirely covered in a deep ocean.

Astronomers have discovered an intriguing exoplanet that could be entirely covered in water. The potential ocean world is called TOI-1452 b, located around 100 light-years away in the constellation of Draco.

The planet was discovered by an international team using data from NASA's Transiting Exoplanet Survey Satellite, or TESS, and is a type of planet called a super-Earth which is somewhat larger and heavier than Earth. It is in its host star's habitable zone, meaning it is the right distance from the star for liquid water to exist on its surface.

Read more