Skip to main content

There could be 300 million potentially habitable planets in our galaxy

When we look up at the night sky, we see thousands of stars, which is just a tiny fraction of the billions of stars in our galaxy. And we can imagine that many of these stars could host exoplanets, meaning that the number of potential planets out there is enormous. But how many of these planets might be habitable? A new study has come up with an estimate.

Researchers from NASA, the SETI Institute, and others, found that there may be as many as 300 million potentially habitable planets in our galaxy alone. And some of these might even be close by, within 30 light-years of our sun.

Recommended Videos

To come up with the estimate, researchers used data from both the Kepler Space Telescope and the Gaia space observatory to build up a picture of the stars and exoplanets in our galaxy. Previous estimates of the number of habitable worlds were based on how far planets were from their star, but the new figure also takes into account factors like how much light a planet receives, which is relevant to whether it could have liquid water on its surface.

This illustration depicts Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone.
This illustration depicts Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone. NASA Ames/JPL-Caltech/T. Pyle

This information can help point exoplanet-hunting tools like NASA’s Transiting Exoplanet Survey Satellite (TESS) in the right direction. “Knowing how common different kinds of planets are is extremely valuable for the design of upcoming exoplanet-finding missions,” said co-author Michelle Kunimoto, who works on the TESS team at the Massachusetts Institute of Technology. “Surveys aimed at small, potentially habitable planets around Sun-like stars will depend on results like these to maximize their chance of success.”

Please enable Javascript to view this content

Future research will need to focus on whether exoplanets have an atmosphere and what it is composed of, which is another key component of habitability. This is hard to assess with current instruments, but next-generation telescopes like the James Webb Space Telescope will be able to investigate exoplanet atmospheres more closely.

For now, the estimate of potentially habitable planets has implications on the biggest of questions — whether we are alone in the universe. “This is the first time that all of the pieces have been put together to provide a reliable measurement of the number of potentially habitable planets in the galaxy,” said co-author Jeff Coughlin, an exoplanet researcher at the SETI Institute and Director of Kepler’s Science Office. “This is a key term of the Drake Equation, used to estimate the number of communicable civilizations — we’re one step closer on the long road to finding out if we’re alone in the cosmos.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more
See planets being born in new images from the Very Large Telescope
This composite image shows the MWC 758 planet-forming disc, located about 500 light-years away in the Taurus region, as seen with two different facilities. The yellow colour represents infrared observations obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope (VLT). The blue regions on the other hand correspond to observations performed with the Atacama Large Millimeter/submillimeter Array (ALMA).

Astronomers have used the Very Large Telescope to peer into the disks of matter from which exoplanets form, looking at more than 80 young stars to see which may have planets forming around them. This is the largest study to date on these planet-forming disks, which are often found within the same huge clouds of dust and gas that stars form within.

A total of 86 young stars were studied in three regions known to host star formation: Taurus and Chamaeleon I, each located around 600 light-years away, and Orion, a famous stellar nursery located around 1,600 light-years away. The researchers took images of the disks around the stars, looking at their structures for clues about how different types of planets can form.

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more