Skip to main content

There could be 300 million potentially habitable planets in our galaxy

When we look up at the night sky, we see thousands of stars, which is just a tiny fraction of the billions of stars in our galaxy. And we can imagine that many of these stars could host exoplanets, meaning that the number of potential planets out there is enormous. But how many of these planets might be habitable? A new study has come up with an estimate.

Researchers from NASA, the SETI Institute, and others, found that there may be as many as 300 million potentially habitable planets in our galaxy alone. And some of these might even be close by, within 30 light-years of our sun.

To come up with the estimate, researchers used data from both the Kepler Space Telescope and the Gaia space observatory to build up a picture of the stars and exoplanets in our galaxy. Previous estimates of the number of habitable worlds were based on how far planets were from their star, but the new figure also takes into account factors like how much light a planet receives, which is relevant to whether it could have liquid water on its surface.

This illustration depicts Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone.
This illustration depicts Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone. NASA Ames/JPL-Caltech/T. Pyle

This information can help point exoplanet-hunting tools like NASA’s Transiting Exoplanet Survey Satellite (TESS) in the right direction. “Knowing how common different kinds of planets are is extremely valuable for the design of upcoming exoplanet-finding missions,” said co-author Michelle Kunimoto, who works on the TESS team at the Massachusetts Institute of Technology. “Surveys aimed at small, potentially habitable planets around Sun-like stars will depend on results like these to maximize their chance of success.”

Future research will need to focus on whether exoplanets have an atmosphere and what it is composed of, which is another key component of habitability. This is hard to assess with current instruments, but next-generation telescopes like the James Webb Space Telescope will be able to investigate exoplanet atmospheres more closely.

For now, the estimate of potentially habitable planets has implications on the biggest of questions — whether we are alone in the universe. “This is the first time that all of the pieces have been put together to provide a reliable measurement of the number of potentially habitable planets in the galaxy,” said co-author Jeff Coughlin, an exoplanet researcher at the SETI Institute and Director of Kepler’s Science Office. “This is a key term of the Drake Equation, used to estimate the number of communicable civilizations — we’re one step closer on the long road to finding out if we’re alone in the cosmos.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Here’s why scientists think life may have thrived on the ‘hell planet’ Venus
The planet Venus.

When you look at Venus today, it doesn’t seem like a very welcoming place. With surface temperatures hotter than an oven, atmospheric pressure equivalent to being 3,000 feet deep in the ocean, and no liquid water anywhere that we’ve seen, it seems like the opposite of a comfortable environment in which life could emerge.

But in the last decade, scientists have begun to wonder whether this “hell planet” could once have been habitable. Billions of years ago, Venus could have been a cooler, wetter place, with oceans not unlike our own here on Earth.

Read more
CHEOPS planet-hunter detects four rarely seen mini-Neptunes
Artist's impression of Cheops, ESA's Characterising Exoplanet Satellite, in orbit above Earth.

The European Space Agency (ESA)'s CHEOPS satellite has discovered four new exoplanets -- and they are a hard-to-detect type called a mini-Neptune. These planets are notable because they are the "missing link" between rocky Earth-sized planets and ice giants like Neptune. They are thought to be very common in our galaxy, but they are hard to spot because they are small and cool compared to the big, bright hot Jupiters which are most commonly detected by exoplanet-hunting telescopes.

Mini-Neptunes do orbit close to their stars, typically being found closer to their stars than Mercury is to the sun. However, hot Jupiters orbit even closer -- which gives them very high surface temperatures of over 1,000 degrees Celsius. Mini-Neptunes have relatively cooler surface temperatures of around 300 degrees Celsius.

Read more
Hubble observes weird star system with three off-kilter, planet-forming disks
This illustration is based on Hubble Space Telescope images of gas and dust discs encircling the young star TW Hydrae. We have an oblique view of three concentric rings of dust and gas. At the centre is the bright white glow of the central star. The reddish-coloured rings are inclined to each other and are therefore casting dark shadows across the outermost ring.

Planets form from large disks of dust and gas that collect around their host stars. Billions of years ago, our solar system would have looked like a single point of bright light coming from the sun, with a disk of matter swirling around it that eventually clumped into planets. To learn about how our solar system formed, it's helpful to look at other systems that are currently going through this process -- such as TW Hydrae, a system located 200 light-years away and turned face-on toward us, making it the perfect place to observe planetary formation.

But there's something odd about the TW Hydrae system. In 2017, astronomers first noticed a strange shadow that was visible on the disk of dust and gas surrounding the star. While such shadows are typically from a planet formed within the disk, in this case the shadow's shape and movement suggested it was actually from a second disk, located within the first disk and tilted at a different angle. Now, astronomers think they have spotted evidence of a third disk, with all three stacked up and creating a complex pattern of shadows.

Read more