Skip to main content

Hubble captures the beautiful ‘tantrums of a baby star’

Herbig-Haro objects are some of the rarer sights in the night sky, taking the form of thin spindly jets of matter floating among the surrounding gas and stars. The two Herbig-Haro objects cataloged as HH46 and HH47, seen in this image taken with the NASA/ESA Hubble Space Telescope, were spotted in the constellation of Vela (the Sails), at a distance of over 1,400 light-years from Earth.
Herbig-Haro objects are some of the rarer sights in the night sky, taking the form of thin spindly jets of matter floating among the surrounding gas and stars. The two Herbig-Haro objects cataloged as HH46 and HH47, seen in this image taken with the NASA/ESA Hubble Space Telescope, were spotted in the constellation of Vela (the Sails), at a distance of over 1,400 light-years from Earth. ESA/Hubble & NASA, B. Nisini

This strange-looking sight, captured by the Hubble Space Telescope, is a pair of Herbig-Haro objects. These objects are rarely spotted in such detail, and studying them could give clues to how stars and born and evolve.

Each jet of brightness is classified as its own object, with the two seen in this particular image cataloged as HH46 and HH47. They are located in the constellation of Vela (the Sails) and are more than 1,400 light-years away.

The illuminated shapes form when newborn stars throw off jets of ionized gas, which the European Space Agency refers to as the “tantrums of a baby star.” These jets can intersect with nearby clouds of dust and gas at extreme speeds, creating shockwaves that form the objects.

Astronomers observed the first Herbig-Haro object in the 19th century, though at the time they thought it was a type of emission nebula — a cloud of dust and gas that becomes ionized by a nearby hot star. More such objects were discovered, and they were thought to be reflection nebulae, which are cloud of dust and gas which reflect the light from other stars. The objects were eventually given their name after the first two astronomers who studied them in-depth, George Herbig and Guillermo Haro.

It wasn’t until 1977 that the two objects pictured, HH46 and HH47, were discovered, and astronomers finally understood what the objects were. American astronomer R.D. Schwartz first proposed the theory that jets from newborn stars were creating visible shockwaves when they hit clouds of dust.

Studying these objects helps us to learn about how stars form. Astronomers John Bally and Jon Morse write that newborn stars are tempestuous, and throw off a large amount of matter in their first 100,000 years of life. These outflows don’t always form Herbig-Haro objects, but when they do, the objects can reveal information about the speed and motion of these jets.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble discovers over 1,000 new asteroids thanks to photobombing
This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern.

The Hubble Space Telescope is most famous for taking images of far-off galaxies, but it is also useful for studying objects right here in our own solar system. Recently, researchers have gotten creative and found a way to use Hubble data to detect previously unknown asteroids that are mostly located in the main asteroid belt between Mars and Jupiter.

The researchers discovered an incredible 1,031 new asteroids, many of them small and difficult to detect with several hundred of them less than a kilometer in size. To identify the asteroids, the researchers combed through a total of 37,000 Hubble images taken over a 19-year time period, identifying the tell-tale trail of asteroids zipping past Hubble's camera.

Read more
Hubble spots a bright galaxy peering out from behind a dark nebula
The subject of this image taken with the NASA/ESA Hubble Space Telescope is the spiral galaxy IC 4633, located 100 million light-years away from us in the constellation Apus. IC 4633 is a galaxy rich in star-forming activity and also hosts an active galactic nucleus at its core. From our point of view, the galaxy is tilted mostly towards us, giving astronomers a fairly good view of its billions of stars.

A new image from the Hubble Space Telescope shows a galaxy partly hidden by a huge cloud of dust known as a dark nebula. The galaxy IC 4633 still shines brightly and beautifully in the main part of the image, but to the bottom right, you can see dark smudges of dust that are blocking the light from this part of the galaxy.

Taken using Hubble's Advanced Camera for Surveys (ACS) instrument, the image also incorporates data from the DECam instrument on the Víctor M. Blanco 4-meter Telescope, which is located in Chile. By bringing together data from the space-based Hubble and the ground-based DECam, astronomers can get a better look at this galaxy, located 100 million light-years away, and the dark dust partially obscuring it.

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more