Skip to main content

Hubble image shows the rings of Saturn sparkling in summer sunlight

The Hubble Space Telescope has captured a new and gorgeous image of the planet Saturn, taken during the northern hemisphere’s summer.

Hubble previously imaged Saturn last year, showing off the planet’s rings and some of its icy moons. This previous image was taken on the planet’s close approach, at 845 million miles away from Earth. The new image is taken from even closer, at 839 million miles away.

Saturn and its rings are on display in this image from NASA's Hubble Space Telescope, taken on July 4, 2020.
Saturn and its rings are on display in this image from NASA’s Hubble Space Telescope, taken on July 4, 2020. NASA , ESA , A. Simon (Goddard Space Flight Center), M.H. Wong (University of California, Berkeley), and the OPAL Team

Saturn has seasons like those on Earth, which occur due to the planet being tilted on its axis, so some parts are closer to the sun than other parts at any given time. It’s summer here on Saturn’s northern hemisphere, and scientists used the data to investigate the weather to be found on the planet.

The researchers found several small atmospheric storms which, unlike the epic storms raging for centuries on Jupiter, are “are transient features that appear to come and go with each yearly Hubble observation,” according to the scientists.

Another notable feature of this image is the slight red tint over the northern hemisphere, while the rest of the planet is toned in yellow and brown due to the composition of its atmosphere. The researchers think this red tint could be due either to the higher levels of heat from the sun this area receives during summer causing a change in the atmospheric circulation, or due to the increased light causing a change in the way the chemicals in the atmosphere appear.

“It’s amazing that even over a few years, we’re seeing seasonal changes on Saturn,” lead investigator Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, said in a statement.

The Hubble scientists also released this annotated “compass” image, showing some of Saturn’s moons labeled along with a scale.

a composite of separate exposures acquired by the WFC3 instrument on the Hubble Space Telescope
These images are a composite of separate exposures acquired by the WFC3 instrument on the Hubble Space Telescope. Several filters were used to sample narrow wavelength ranges. The color results from assigning different hues (colors) to each monochromatic (grayscale) image associated with an individual filter. In this case, the assigned colors are: Blue: F395N Green: F502N Red: F631N NASA , ESA , A. Simon (Goddard Space Flight Center), M.H. Wong (University of California, Berkeley), and the OPAL Team

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble spots an ancient pair of supermassive black holes about to merge
This artist's concept shows the brilliant glare of two quasars residing in the cores of two galaxies that are in the chaotic process of merging. The gravitational tug-of-war between the two galaxies ignites a firestorm of star birth.

The hearts of some galaxies glow so brightly that they are given a special name: Quasars. Powered by supermassive black holes at the center of these galaxies, these regions give off tremendous amounts of light as gas falls towards the black hole and heats up, resulting in a glow as powerful as over 100 billion stars. Recently, astronomers using the Hubble Space Telescope spotted two of these quasars burning brightly in the night sky -- and they're on a collision course.

The pair of quasars, known as SDSS J0749+2255, are from some of the earliest stages of the universe when it was just 3 billion years old. The two galaxies that host the quasars are in the process of merging, and eventually, the two will come together to form one enormous galaxy.

Read more
Saturn’s rings are raining down particles on its atmosphere
This is a composite image showing the Saturn Lyman-alpha bulge, an emission from hydrogen which is a persistent and unexpected excess detected by three distinct NASA missions, namely Voyager 1, Cassini, and the Hubble Space Telescope between 1980 and 2017.

Saturn's famous rings don't just give the planet its distinctive look -- they also affect its weather. New research using the Hubble Space Telescope shows that the icy rings actually heat up Saturn's atmosphere, a phenomenon that could help us learn more about distant exoplanets as well.

Saturn's rings are made up of small particles of ice, forming ring shapes that reach 175,000 miles away from the planet. And it seems that it is these icy particles that are, somewhat counterintuitively, causing heating in the planet's atmosphere. Researchers looked at observations from Hubble as well as the Cassini and Voyager missions and saw more ultraviolet radiation than they expected in Saturn's upper atmosphere, indicating heating there.

Read more
There’s a cosmic jellyfish in this week’s Hubble image
The galaxy JW100 (lower right) features prominently in this image from the NASA/ESA Hubble Space Telescope. The streams of star-forming gas dripping from the disk of the galaxy like streaks of fresh paint are formed by a process called ram pressure stripping. Their resemblance to dangling tentacles led astronomers to refer to JW100 as a ‘jellyfish’ galaxy. JW100 is over 800 million light-years away, in the constellation Pegasus.

This week's Hubble image shows an unusual type of galaxy that might seen more at home in the ocean than among the stars: a jellyfish galaxy. These galaxies have a main body of stars, with tentacle-like structures reaching off away from the body in just one direction. This particular jellyfish galaxy, known as JW100, is located more than 800 million light-years away and is found in the constellation of Pegasus.

The jellyfish galaxy is located toward the bottom right of the image, with purple-pink tentacles of stars reaching downward. In the upper middle part of the image, you'll also see two very bright blobs, which are the core of another galaxy within the same galaxy cluster. This nearby galaxy, called IC 5338, is the brightest one within the cluster and has a large glowing area around it called a halo.

Read more