Skip to main content

Hubble captures a wandering comet passing through the Trojan asteroids

NASA's Hubble Space Telescope snapped this image of the young comet P/2019 LD2 as it orbits near Jupiter’s captured ancient asteroids, which are called Trojans. The Hubble view reveals a 400,000-mile-long tail of dust and gas flowing from the wayward comet's bright solid nucleus.
NASA’s Hubble Space Telescope snapped this image of the young comet P/2019 LD2 as it orbits near Jupiter’s captured ancient asteroids, which are called Trojans. The Hubble view reveals a 400,000-mile-long tail of dust and gas flowing from the wayward comet’s bright solid nucleus. NASA/ESA/J. Olmsted/STScI

Both comets and asteroids are objects orbiting the sun, but comets are made of dust and ice while asteroids are made of rock, which means they have very different properties and appear differently in the sky. But there are rarely-spotted objects called centaurs which are a little bit of comet and a little bit of asteroid — hence their name after the mythical creatures which were half human and half horse.

The orbits of centaurs often cross the orbits of the outer planets, which makes them unstable, and they have water ice on their surfaces which leaves a comet-like trail, but their interior composition is more like an asteroid.

Recently, the Hubble Space Telescope snapped an image of an object called P/2019 LD2 which appears to be a centaur, with a comet-like tail that is formed when surface ice starts to vaporize, leaving a long tail of matter spread across the sky. Previous observations by the Spitzer Space Telescope showed its composition included carbon monoxide and carbon dioxide gases.

It’s a rare thing to be able to capture an image of such a wanderer, located between Jupiter and Neptune. It is currently nestled among a group of asteroids in the orbit of Jupiter called the Trojans, which is the first time a comet-like object has been seen there.

“Only Hubble could detect active comet-like features this far away at such high detail, and the images clearly show these features, such as a roughly 400,000-mile-long broad tail and high-resolution features near the nucleus due to a coma and jets,” said lead Hubble researcher Bryce Bolin of Caltech in a statement.

“The visitor had to have come into the orbit of Jupiter at just the right trajectory to have this kind of configuration that gives it the appearance of sharing its orbit with the planet. We’re investigating how it was captured by Jupiter and landed among the Trojans. But we think it could be related to the fact that it had a somewhat close encounter with Jupiter.”

The object probably won’t stay among the Trojans for long though, as simulations show it will come close to Jupiter in around two years’ time which will push it onto a new path.

“The cool thing is that you’re actually catching Jupiter flinging this object around and changing its orbital behavior and bringing it into the inner system,” said team member Carey Lisse of the Johns Hopkins University Applied Physics Laboratory (APL). “Jupiter controls what’s going on with comets once they get into the inner system by altering their orbits.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble captures a cosmic sea monster with this image of a jellyfish galaxy
A jellyfish galaxy with trailing tentacles of stars hangs in inky blackness in this image from the NASA/ESA Hubble Space Telescope. As Jellyfish galaxies move through intergalactic space they are slowly stripped of gas, which trails behind the galaxy in tendrils illuminated by clumps of star formation. These blue tendrils are visible drifting below the core of this galaxy, and give it its jellyfish-like appearance. This particular jellyfish galaxy — known as JO201 — lies in the constellation Cetus, which is named after a sea monster from ancient Greek mythology. This sea-monster-themed constellation adds to the nautical theme of this image.

This week's image from the Hubble Space Telescope shows a special and delightful cosmic object: a jellyfish galaxy. These galaxies are named for their larger main body with tendrils that float along after them, like the sea creatures.

This particular jellyfish galaxy is called JO201, and is located in the constellation of Cetus. Appropriately for the sea theme, Cetus is a constellation named after a Greek mythological sea monster that sometimes had the body of a whale or serpent along with the head of a boar. In the image, you can see the main body of the galaxy in the center, with the trailing tendrils spreading down toward the bottom of the frame.

Read more
Roman Space Telescope will survey the sky 1,000 times faster than Hubble
NASA’s Nancy Grace Roman Space Telescope

Since its launch in 2021, the James Webb Space Telescope has been delighting space fans with its stunning views of space objects near and far. But NASA has another space telescope in the works that will be able to help answer even more of the big questions in astronomy. The Nancy Grace Roman Space Telescope, set to launch in 2027 and colloquially known as Roman, will look at vast areas of space to help cosmologists understand the universe on a large scale.

In astronomy research, it's important to be able to look both in very great detail and on a very wide scale. Telescopes like Hubble and James Webb have exceptional sensitivity, so they can look at extremely distant objects. Roman will be different, aiming to get a broad view of the sky. The image below illustrates the differences between the telescopes, showing what Roman and Hubble can capture in one go and comparing Hubble's detailed, but narrow view to Roman's much wider view.

Read more
Hubble sees the dramatic collision of NASA’s DART spacecraft and an asteroid
These three panels capture the breakup of the asteroid Dimorphos when it was deliberately hit by NASA's 1,200-pound Double Asteroid Redirection Test (DART) mission spacecraft on September 26, 2022. Hubble Space Telescope had a ringside view of the space demolition derby.

Last year NASA tested out a new method for defending the planet from incoming objects by crashing a spacecraft into an asteroid. Recently, further analysis of data from the impact has shown more about what occurred during and after the impact, and how effective it was at changing the orbit of the asteroid.

The Hubble Space Telescope captured a series of images showing the aftermath of the impact, which have been put together into a video showing the bright flash of the impact and the emerging plume of material sent up from the asteroid:

Read more