Skip to main content

James Webb spots carbon dioxide in exoplanet atmosphere for first time

Researchers using the James Webb Space Telescope have detected carbon dioxide in an exoplanet atmosphere for the first time, demonstrating how using the new space telescope will help us to learn about far-off planets and even to find potentially habitable planets outside our solar system.

The planet in question, called WASP-39 b, is a gas giant orbiting a sun-like star and is located around 700 light-years away. Its mass if just a quarter of the mass of Jupiter, but its diameter is 1.3 times Jupiter’s, so it is not dense and is very puffy. As it orbits very close to its star, with a year there lasting just over four Earth days, it has very high surface temperatures and is a type of planet called a hot Jupiter.

This is an illustration (artist’s impression) showing what the exoplanet WASP-39 b could look like, based on current understanding of the planet.
This is an illustration (artist’s impression) showing what the exoplanet WASP-39 b could look like, based on current understanding of the planet. NASA, ESA, CSA, and J. Olmsted (STScI)

The research team was able to see into WASP-39 b’s atmosphere using Webb’s NIRSpec instrument. This spectrometer splits light into different wavelengths to see which wavelengths have been absorbed — and that indicates the composition of the object. When looking at the light coming from the host star when the planet passed in front of it, the researchers could get data on its atmosphere using a method called transmission spectroscopy.

Recommended Videos

The results show a clear blocking of light between the 4.1 and 4.6-micron wavelengths, which indicates the presence of carbon dioxide. “As soon as the data appeared on my screen, the whopping carbon dioxide feature grabbed me,” said one of the researchers, Zafar Rustamkulov of Johns Hopkins University, in a statement. This is the first time that carbon dioxide has been identified in an exoplanet atmosphere. “It was a special moment, crossing an important threshold in exoplanet sciences.”

Learning about exoplanet atmospheres helps to understand how the planet evolved. And as well as helping scientists to learn about this particular planet, the results are an exciting demonstration of how James Webb can help us learn about other exoplanets in the future. “Seeing the data for the first time was like reading a poem in its entirety, when before we only had every third word,” said team member Laura Kreidberg of the Max Planck Institute for Astronomy. “These first results are just the beginning; the Early Release Science data have shown that Webb performs beautifully, and smaller and cooler exoplanets (more like our own Earth) are within its reach.”

The research will be published in the journal Nature.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more
James Webb snaps a colorful image of a star in the process of forming
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb's instruments: a previous version that was taken in the near-infrared with Webb's NIRCam camera, and new data in the mid-infrared taken with Webb's MIRI instrument.

Read more
See a stunning 3D visualization of astronomy’s most beautiful object
This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light).

This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light). Greg Bacon (STScI), Ralf Crawford (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Christian Nieves (STScI), Joseph Olmsted (STScI), Alyssa Pagan (STScI), Frank Summers (STScI), NASA's Universe of Learning

The Pillars of Creation are perhaps the most famous object in all of astronomy. Part of the Eagle Nebula, this vista was first captured by the Hubble Space Telescope in 1995, and has captivated the public ever since with its dramatic rising pillars of dust and gas that stretch several light-years high. The nebula has been imaged often since then, including again by Hubble in 2014 and more recently by the James Webb Space Telescope in 2022.

Read more