See what James Webb and Hubble are observing right now with this tool

If you’re looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Recommended Videos

At time of writing, for example, the tracker shows James Webb observing a region called HST10 using its NIRSpec and MIRI instruments. This particular observation is part of a project using MIRI’s integral field unit (IFU), a spectroscopy mode that can observe either single stars or larger targets like nebulae. The study is looking at gas, dust, and molecules called polycyclic aromatic hydrocarbons (PAHs) in protoplanetary disks, which are the disks of matter from which planets form.

A screenshot of Webb’s current observation target, HST10. Space Telescope Live: NASA, ESA, CSA, STScI, and CDS.

The images you see on the tracker aren’t the live images being pulled straight from the telescope, as that data still needs to be processed. Instead, they use existing data from projects like the Two Micron All Sky Survey and the Digitized Sky Survey 2 that show images of the region that the telescope is currently pointed at.

When you see the current target through the tracker, you can use the Observation Details button at the top right to pull up information about the instruments being used, the science topics being researched, and the particular project and principal investigator of the research.

You can also see a schedule of when observations started and ended, and their total duration — they are often shorter than you might imagine. The above observation, for example, lasted less than 90 minutes. Typically, projects have multiple observation blocks over a period of months, but with many different researchers wanting precious time on the telescope, the project planners have to be very efficient with the time they are allotted.

You can also click through older observations using the Previous Target and Next Target buttons. In addition to showing you the variety of objects that the telescopes observe, from nebulae to stars to galaxies, this also gives you a sense of how the telescope tracks its targets across the sky — and it also shows how many different observations get squeezed into a day.

Editors' Recommendations

Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb Space Telescope celebrated on new stamps

Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024. USPS

Beautiful images captured by the James Webb Space Telescope have landed on a new set of stamps issued this week by the U.S. Postal Service (USPS).

Read more
James Webb captures a unique view of Uranus’s ring system

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more
James Webb spots tiniest known brown dwarf in stunning star cluster

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more