Skip to main content

James Webb’s sunshield extended to its full 47-foot width

Following a successful launch on Christmas day, the James Webb Space Telescope is currently heading through space, having traveled almost 500,000 miles from Earth. It is just over halfway to its eventual destination: The L2 orbit, called a Lagrange point, where it will move around the sun in a complex path. As James Webb travels it is slowly unfolding its various hardware which had to be folded up origami-style to fit into the Ariane 5 rocket which launched it.

The telescope is currently in the process of deploying its tennis court-sized sunshield — a complex operation of many steps which began earlier this week and is expected to take four to five days. This started with the deployment of structures called Pallet Structures, which hold the sunshield itself plus components like cables and pulleys. With the forward and aft pallet structures in place, the next step was deploying the Deployable Tower Assembly, a structure that creates space between the spacecraft and the telescope to make space for the sunshield. This deployment took place on Wednesday, December 29.

With that done, over Thursday and Friday this week the team deployment the aft moment flap to help maintain the telescope’s orientation once it is in orbit, and released the sunshield covers which protected the thin sunshield during launch.

The latest update from NASA is that James Webb has extended its two sunshield mid-booms. These “arms” extend to the left and right of the telescope, pulling the thin membrane of the sunshield with them until it spanned the full 47 feet of its width. Their deployment means that all of the 107 release devices for the various parts of the sunshield deployment have now been released.

“The mid-booms are the sunshield’s workhorse and do the heavy lifting to unfold and pull the membranes into that now-iconic shape,” said Keith Parrish, Webb observatory manager at NASA’s Goddard Space Flight Center, in a blog post.

The deployment of the mid-booms took a little longer than expected as the team paused to assess a possible issue with the rolling up of the sunshield cover. The switches on the cover seemed not to have activated, but other sensors showed that the cover had indeed rolled up correctly. They decided to go ahead and the deployment was successful.

“Today is an example of why we continue to say that we don’t think our deployment schedule might change, but that we expect it to change,” Parrish said. “The team did what we had rehearsed for this kind of situation — stop, assess, and move forward methodically with a plan. We still have a long way to go with this whole deployment process.”

The next step is for the sunshield to be tensioned, in which each of its five layers will be stretched into place, which is expected to happen over the next few days.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere
This illustration conceptualises the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day.

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities -- like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

Read more
Astronomers share early images from James Webb’s galaxy survey
Images of four example galaxies selected from the first epoch of COSMOS-Web NIRCam observations, highlighting the range of structures that can be seen. In the upper left is a barred spiral galaxy; in the upper right is an example of a gravitational lens, where the mass of the central galaxy is causing the light from a distant galaxy to be stretched into arcs; on the lower left is nearby galaxy displaying shells of material, suggesting it merged with another galaxy in its past; on the lower right is a barred spiral galaxy with several clumps of active star formation.

One of the major aims of the James Webb Space Telescope is to observe some of the earliest galaxies in the universe, and to do that it needs to be able to see extremely distant objects. But looking at a particular very old galaxy in detail is only half of the problem. To truly understand the earliest stages of the universe, astronomers also need to see how these very old galaxies are distributed so they can understand the large-scale structure of the universe.

That's the aim of the COSMOS-Web program, which is using James Webb to survey a wide area of the sky and look for these rare, ancient galaxies. It aims to study up to 1 million galaxies during over 255 hours of observing time, using both Webb's near-infrared camera (NIRCam) and its mid-infrared instrument (MIRI) camera. While there is still plenty of observing left to do, the researchers in the COSMOS-Web program recently shared some of their first results.

Read more
How James Webb is peering into galaxies to see stars being born
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds.

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

Read more