Skip to main content

James Webb’s MIRI instrument about to face most daunting challenge yet

In the long process of getting ready to take its first scientific observations this summer, the James Webb Space Telescope now has three out of its four instruments aligned to its mirrors. The fourth instrument, MIRI or the mid-infrared instrument, will take a little longer because it uses a different type of sensor which needs to be kept at an extremely low temperature — and achieving this temperature requires, perhaps surprisingly, both a cooler and a heater. Now, NASA has shared an update on the process of getting MIRI down to temperature and ready for operations.

Webb’s three other instruments are already at their chilly operating temperatures of 34 to 39 kelvins, but MIRI needs to get all the way down to 7 kelvins. To achieve that, the instrument has a special cryocooler system. “Over the last couple of weeks, the cryocooler has been circulating cold helium gas past the MIRI optical bench, which will help cool it to about 15 kelvins,” cryocooler specialists Konstantin Penanen and Bret Naylor at NASA’s Jet Propulsion Laboratory wrote. “Soon, the cryocooler is about to experience the most challenging days of its mission. By operating cryogenic valves, the cryocooler will redirect the circulating helium gas and force it through a flow restriction. As the gas expands when exiting the restriction, it becomes colder, and can then bring the MIRI detectors to their cool operating temperature of below 7 kelvins.”

Related Videos
MIRI is inspected in the giant clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in 2012.
MIRI is inspected in the giant clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in 2012. NASA/Chris Gunn

Before the instrument can reach operating temperature, however, it has to make it through a difficult stage called the pinch point. This is the point at around 15 kelvins when the cryocooler is at its cooling limit, and engineers have to perform a series of complex and rapid adjustments based on the cooler’s temperature and flow rate. This critical point is the most difficult part of the operation, so technicians have been practicing it here on Earth to get ready for the real event. Once this tricky operation is done, MIRI will be ready to start taking readings.

MIRI is particularly valuable as an instrument because it looks in the mid-infrared rather than near-infrared, enabling a different set of scientific observations of targets like exoplanets. “The imager promises to reveal astronomical targets ranging from nearby nebulae to distant interacting galaxies with a clarity and sensitivity far beyond what we’ve seen before,” explained two MIRI scientists, Alistair Glasse and Macarena Garcia Marin. “Our grasp on these glittering scientific treasures relies on MIRI being cooled to a temperature below the rest of the observatory, using its own dedicated refrigerator. Exoplanets at temperatures similar to Earth will shine most brightly in mid-infrared light.”

Editors' Recommendations

A failed Webb telescope calibration leads to the discovery of this tiny asteroid
An asteroid roughly the size of Rome’s Colosseum — between 300 to 650 feet (100 to 200 meters) in length — has been detected by an international team of European astronomers using NASA's James Webb Space Telescope. They used data from the calibration of the MIRI instrument, in which the team serendipitously detected an interloping asteroid. The object is likely the smallest observed to date by Webb and may be an example of an object measuring under 1 kilometer in length within the main asteroid belt, located between Mars and Jupiter. More observations are needed to better characterize this object’s nature and properties.

With any new technology, there are bound to be failures -- and that's true of cutting-edge astronomy instruments like the James Webb Space Telescope as well. But failures can have a silver lining, as was demonstrated recently when an unsuccessful attempt to calibrate a Webb instrument to a well-known asteroid turned up a delightful surprise: the discovery of a new, different asteroid that is just a few hundred feet across.

An asteroid roughly the size of Rome’s Colosseum — between 300 to 650 feet in length — has been detected by a team of European astronomers using NASA's James Webb Space Telescope. They used data from the calibration of the MIRI instrument to serendipitously detect an interloping asteroid. The object is likely the smallest observed by Webb, and may be an example of an object measuring under 1 kilometer in length within the main asteroid belt, located between Mars and Jupiter.  ARTWORK: NASA, ESA, CSA, N. Bartmann (ESA/Webb), Martin Kornmesser (ESA), Serge Brunier (ESO), Nick Risinger (Photopic Sky Survey)

Read more
See a stunning field of galaxies captured by James Webb Space Telescope
A crowded field of galaxies throngs this Picture of the Month from the NASA/ESA/CSA James Webb Space Telescope, along with bright stars crowned with Webb’s signature six-pointed diffraction spikes. The large spiral galaxy at the base of this image is accompanied by a profusion of smaller, more distant galaxies which range from fully-fledged spirals to mere bright smudges. Named LEDA 2046648, it is situated a little over a billion light-years from Earth, in the constellation Hercules.

Stunning images from the James Webb Space Telescope continue to entrance, and recently the researchers using the telescope have shared a gorgeous image of a field of galaxies as part of the Webb Picture of the Month collection.

The image shows a spattering of different background galaxies, while the foreground shows bright individual stars and a bright spiral galaxy at the bottom called LEDA 2046648. Located around a billion light-years from Earth, this galaxy is relatively much closer to us than the far-off background galaxies which is why it is so prominent in the image.

Read more
James Webb peers into icy cloud to learn about exoplanet formation
This image by the NASA/ESA/CSA James Webb Space Telescope’s Near-InfraRed Camera (NIRCam) features the central region of the Chameleon I dark molecular cloud, which resides 630 light years away. The cold, wispy cloud material (blue, centre) is illuminated in the infrared by the glow of the young, outflowing protostar Ced 110 IRS 4 (orange, upper left). The light from numerous background stars, seen as orange dots behind the cloud, can be used to detect ices in the cloud, which absorb the starlight passing through them.

Here's how to build an exoplanet: You start off with a star that's surrounded by a disk of dust and gas. As the star burns and sends out gusts of stellar wind, the dust in the disk begins to interact and form into clumps. These clumps attract more dust, turning into pebbles, and then into rocks, and the gas helps these rocks stick together. They grow, picking up more and more material and clearing their orbit around the star. These are the first stage of planetary development, called planetesimals.

There's another important ingredient for growing a planet, though: ice. In the cold clouds of dust and gas, ice forms as a kind of frost on dust grains. These icy grains carry some of the key ingredients for a potentially habitable planet, like carbon, hydrogen, and oxygen. Here on Earth, it's thought that some of these ingredients could have been brought to our planet by icy comets, but in other systems, these ices could have been present as the exoplanets formed.

Read more