Three of James Webb’s four instruments are now aligned

The long process of getting the James Webb Space Telescope ready to begin collecting science data continues, and the Webb team has met another goal with the alignment of three out of its four instruments. The alignment process is a set of careful very small adjustments to each instrument to make sure they are in exactly the right location to receive light from the telescope’s large primary mirror. A few weeks ago the telescope’s mirrors were aligned with its main camera, called NIRCam, and now the telescope’s other instruments are being similarly adjusted.

Webb’s three near-infrared instruments (the Near-Infrared Slitless Spectrograph or NIRISS, the Near-Infrared Spectrometer or NIRSpec, and the Near-Infrared Camera or NIRCam) and its guidance sensor (the Fine Guidance Sensor or FGS) are now all aligned to its mirrors, leaving just the one mid-infrared instrument to go. The mid-infrared instrument (MIRI) takes longer to align because it uses a different type of sensor, which have to be cooled to an extremely low temperature of just 7 degrees kelvin. MIRI is still in the process of being cooled down to its operating temperature, and once it reaches this milestone then it too can be aligned.

Recommended Videos

The team had planned to make adjustments to the telescope’s secondary mirror — a smaller round mirror on the end of a boom arm — during the alignment process for the first three instruments, called phase six. However, it turned out that their alignments were so accurate that this wasn’t necessary, so they will wait until MIRI is fully cooled before making any final tweaks to the secondary mirror, in phase seven.

“As a general rule, the commissioning process starts with coarse corrections and then moves into fine corrections. The early secondary mirror coarse corrections, however, were so successful that the fine corrections in the first iteration of Phase Six were unnecessary,” said Chanda Walker, Webb wavefront sensing and control scientist at Ball Aerospace, in a NASA blog post. “This accomplishment was due to many years of planning and great teamwork among the wavefront sensing team.”

Once MIRI is cooled and all four instruments are aligned, there will be a second multi-instrument alignment phase to make any final small tweaks or adjustments. With alignment complete, the team will be able to move on to calibrating the instruments, getting them ready to begin science operations this summer.

Editors' Recommendations

Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble captures a busy frame of four overlapping spiral galaxies

This week's image from the Hubble Space Telescope shows a host of galaxies overlapping in a complex swirl. Four main galaxies are shown in the image, three of which look like they are practically on top of each other, but all is not as it appears in this case.

The largest galaxy in the image, located on the right, is NGC 1356, an elegant barred spiral galaxy similar to our Milky Way. It is also known as the Great Barred Spiral Galaxy due to the prominent nature of its bar, which is a bright structure at the center of the galaxy which is rich with stars. Near this galaxy appear two smaller spiral galaxies, LEDA 467699 and LEDA 95415, and off on the left side of the image is IC 1947.

Read more
James Webb captures a unique view of Uranus’s ring system

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more
James Webb spots tiniest known brown dwarf in stunning star cluster

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more