Skip to main content

How James Webb is peering into galaxies to see stars being born

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

A view of the inside of a distant spiral galaxy.
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds. NASA/Space Telescope Science Institute

“We’re studying 19 of our closest analogues to our own galaxy,” explained one of the researchers, Erik Rosolowsky of the University of Alberta, in a statement. “In our own galaxy, we can’t make a lot of these discoveries because we’re stuck inside it.”

Recommended Videos

By using Webb’s infrared instruments, the researchers can look through clouds of dust and gas which could be opaque if viewed in the visible light range. As objects get warmer, they give off more infrared light, so Webb’s instruments can see where pockets of warmer dust and gas sit, and how this relates to areas where stars are forming.

Please enable Javascript to view this content

“At 21 micrometers [the infrared wavelength used for the images collected], if you look at a galaxy you will see all of those dust grains heated with light from the stars,” said Hamid Hassani, another of the researchers. “The infrared light is really key to tracing the cold and distant universe.”

The team has so far examined 15 galaxies, out of a total of 19 that they will examine for their project. For the galaxies imaged so far, the researchers took information about the distribution and warmth of stars and worked out the ages of those stars. That came with some surprises, as many of the images they were observing showed bright stars that were younger than they were expecting.

“The age of these [stellar] populations is very young. They’re really just starting to produce new stars and they are really active in the formation of stars,” said  Hassani.

It is the process of star formation which makes a galaxy grow and thrive. Star formation is a delicate balance of having enough material for new stars to form, and the stellar winds created by young stars blow this material away.

“If you have a star forming, that galaxy is still active,” Hassani said. “You have a lot of dust and gas and all of these emissions from the galaxy that trigger the next generation of the next massive star forming and just keep the galaxy alive.”

The research is published in The Astrophysical Journal Letters.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Stunning view of the Sombrero Galaxy captured by James Webb
The NASA/ESA/CSA James Webb Space Telescope recently imaged the Sombrero galaxy with its MIRI (Mid-Infrared Instrument), resolving the clumpy nature of the dust along the galaxy’s outer ring. The mid-infrared light highlights the gas and dust that are part of star formation taking place among the Sombrero galaxy’s outer disk. The rings of the Sombrero galaxy produce less than one solar mass of stars per year, in comparison to the Milky Way’s roughly two solar masses a year. It’s not a particular hotbed of star formation. The Sombrero galaxy is around 30 million light-years from Earth in the constellation Virgo.

A new image from the James Webb Space Telescope shows a stunning and fashionable sight: the Sombrero Galaxy, named for its resemblance to the traditional Mexican hat. With its wide, flat shape reminiscent of the hat's wide brim, the galaxy, also known as Messier 104, has outer rings that are clearly visible for the first time.

The Sombrero Galaxy is located 30 million light-years away, in the constellation of Virgo, and it has been previously imaged by the Hubble Space Telescope. But while in the Hubble image, the galaxy appears as an opaque, pale disk, in the new Webb image you can see an outer blue disk, with a small bright core right at the center.

Read more
Astronomers snap first up-close image of a star outside our galaxy
This image shows an artist’s reconstruction of the star WOH G64, the first star outside our galaxy to be imaged in close-up. It is located at a staggering distance of over 160 000 light-years away in the Large Magellanic Cloud. This artistic impression showcases its main features: an egg-shaped cocoon of dust surrounding the star and a ring or torus of dust. The existence and shape of the latter require more observations to be confirmed.

It's sometimes hard to grasp the scale of our universe, when even our own galaxy is so large and filled with billions of stars. But all of the stars that we have seen in detail are contained within the roughly 100,000 light-year span of our Milky Way galaxy. That is, until now, as astronomers recently observed a star outside of our galaxy up close for the first time.

The researchers looked at star WOH G64, located 160,000 light-years away, using the European Southern Observatory’s Very Large Telescope Interferometer. The image shows the main bulk of the star surrounded by a puffy cocoon of dust and gas.

Read more
Stunning images of nearby galaxies from the VLT Survey Telescope
Image of the irregular dwarf galaxy Sextans A, located at a distance of about 4 million light years from us, towards the edge of the Local Group, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory, Chile.

A gorgeous new set of images shows the striking sight of nearby galaxies, captured by a telescope called the VLT Survey Telescope (VST), located at the European Southern Observatory (ESO)'s Paranal Observatory in Chile. Some of these galaxies are well-known, like the famous Sextans A, which is a small dwarf galaxy with an unusual square shape that is located just 4 million light years away.

Sextans A, shown above, is just a fraction of the size of our Milky Way galaxy at only 5,000 light years across and has been shaped by epic supernova events as stars come to the end of their lives and explode, pushing the material of the galaxy into its odd configuration.

Read more