Skip to main content

James Webb Space Telescope may have spotted its first supernova

The James Webb firsts keep coming, with the new space telescope having recently spotted what could be the most distant galaxy ever observed. Now, it may have spotted its first supernova.

The potential supernova spotted by the James Webb Space Telescope.
The potential supernova spotted by the James Webb Space Telescope. pace Telescope Science Institute

As reported by Inverse, researchers using Webb believe they have observed a supernova using the NIRCam instrument. They compared the Webb data to data collected using Hubble and found a bright object which could be a star that has just gone supernova.

A supernova occurs when a massive star runs out of fuel and comes to the end of its life. As the star collapses, it throws off much of its material in an enormous explosion which gives out large amounts of light. This light is so bright it can be spotted from great distances away. Webb spotted one such bright flash in the galaxy SDSS.J141930.11+5251593. The telescope made two observations of the galaxy five days apart, and in the second observation, the flash was less bright, suggesting it is dimming over time.

“We would need more time series data to make a determination, but the data we do have does match that of a supernova, so it’s a very good candidate,” lead author Mike Engesser of the Space Telescope Science Institute said to Inverse.

This finding is rather surprising, even with Webb’s extreme sensitivity. Because supernovae are transient events, meaning they don’t last for long, you have to get lucky to observe one when it happens. Although technically, the supernova happened billions of years ago, we are only just seeing it now because it takes time for the light to travel to us from the distant galaxy.

Webb wasn’t designed to detect supernovae, but researchers are making the most of the data collected so far and are finding surprising uses for it. The advantage of looking at this kind of target with Webb is that it will be able to observe the area around the supernova to see its effects and the aftermath of such a large explosion.
Understanding more about supernovae is important not only for understanding the life cycles of stars, but also for measuring the expansion of the universe. A class of supernovae called Type 1a are used as “mile markers” for measuring distances because they have consistent levels of brightness and can be seen from great distances.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb telescope peers at the atmosphere of a rocky hell world
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer.

This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometers (0.015 astronomical units), completing one full orbit in less than 18 hours. NASA, ESA, CSA, R. Crawford (STScI)

When it comes to learning about exoplanets, or planets beyond our solar system, the James Webb Space Telescope is providing more information than ever before. Over the last decade or so, thousands of exoplanets have been discovered, with details available about these worlds, such as their orbits and their size or mass. But now we're starting to learn about what these planets are actually like, including details of their atmospheres. Webb recently investigated the atmosphere around exoplanet 55 Cancri e, finding what could be the first atmosphere of a rocky planet discovered outside the solar system.

Read more
James Webb observes extremely hot exoplanet with 5,000 mph winds
This artist’s concept shows what the hot gas-giant exoplanet WASP-43 b could look like. WASP-43 b is a Jupiter-sized planet circling a star roughly 280 light-years away, in the constellation Sextans. The planet orbits at a distance of about 1.3 million miles (0.014 astronomical units, or AU), completing one circuit in about 19.5 hours. Because it is so close to its star, WASP-43 b is probably tidally locked: its rotation rate and orbital period are the same, such that one side faces the star at all times.

Astronomers using the James Webb Space Telescope have modeled the weather on a distant exoplanet, revealing winds whipping around the planet at speeds of 5,000 miles per hour.

Researchers looked at exoplanet WASP-43 b, located 280 light-years away. It is a type of exoplanet called a hot Jupiter that is a similar size and mass to Jupiter, but orbits much closer to its star at just 1.3 million miles away, far closer than Mercury is to the sun. It is so close to its star that gravity holds it in place, with one side always facing the star and the other always facing out into space, so that one side (called the dayside) is burning hot and the other side (called the nightside) is much cooler. This temperature difference creates epic winds that whip around the planet's equator.

Read more
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more