Skip to main content

Gorgeous images of Jupiter’s cloud tops snapped by Juno spacecraft

NASA’s Juno mission has become a favorite among space fans for its JunoCam instrument which often captures gorgeous images of the beauty of the planet Jupiter and its moons. Earlier this year the spacecraft made its 49th close flyby of the planet, and NASA recently released some more stunning images taken as it whizzed by the planet’s cloud tops.

The first image was taken as the spacecraft made its close flyby on March 1, showing the complex structures in the cloud tops of the planet’s atmosphere. NASA explains that the image shows “bands of high-altitude haze forming above cyclones in an area known as Jet N7.” Cyclones are a common feature on Jupiter, particularly near the poles, and a formed due to differences in atmospheric pressure which cause parts of the atmosphere to rotate. Here you can see a number of cyclones, which rotate clockwise, but it is also common to observe anticyclones, which rotate counterclockwise.

Bands of high-altitude haze forming above cyclones in an area of Jupiter known at Jet N7.
On March 1, 2023, NASA’s Juno mission completed its 49th close flyby of Jupiter. As the spacecraft flew low over the giant planet’s cloud tops, its JunoCam instrument captured this look at bands of high-altitude haze forming above cyclones in an area known at Jet N7. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Björn Jónsson © CC NC SA

The Jet N7 region of Jupiter is located in the northern hemisphere and has been previously observed to have strong storms in its atmosphere. The image was taken when Juno was around 5,095 miles (8,200 kilometers) above the cloud tops, and the processing for the image was done by a citizen scientist, Björn Jónsson.

Recommended Videos

The raw images from JunoCam are all made publicly available, and if you want to try your hand at image processing yourself then you can look at the image processing gallery and website.

The glow from a bolt of lightning near a vortex near Jupiter’s north pole.
In this view of a vortex near Jupiter’s north pole, NASA’s Juno mission observed the glow from a bolt of lightning. On Earth, lightning bolts originate from water clouds, and happen most frequently near the equator, while on Jupiter lightning likely also occurs in clouds containing an ammonia-water solution, and can be seen most often near the poles. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Kevin M. Gill © CC BY

Another striking image recently captured by JunoCam shows a vortex near Jupiter’s north pole. The flash of green in the center of the image is the glow from a bolt of lightning, which is known to exist in the planet’s atmosphere. Here on Earth, lightning occurs mostly at lower altitudes and is created by clouds of water vapor which build up static charge. On Jupiter, however, the clouds contain ammonia in addition to water, which allows lightning to form at higher altitudes as well.

This image was taken from a little further out, when the spacecraft was 19,900 miles (32,000 kilometers) from the cloud tops on December 30, 2020. It was processed by Kevin M. Gill, who specializes in JunoCam images. There should be more images from JunoCam coming in the next few months, as the Juno spacecraft comes close to Jupiter and passes over its night side, possibly catching more lightning as it happens.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Feast your eyes on 10 years of Hubble images of Jupiter, Saturn, Uranus, Neptune
This is a montage of NASA/ESA Hubble Space Telescope views of our solar system's four giant outer planets: Jupiter, Saturn, Uranus, and Neptune, each shown in enhanced color. The images were taken over nearly 10 years, from 2014 to 2024.

While the Hubble Space Telescope might be most famous for its images of beautiful and far-off objects like nebulae or distant galaxies, it also takes images of objects closer to home, including the planets right here in our own solar system. For the past 10 years, Hubble has been studying the outer planets in a project called OPAL (Outer Planet Atmospheres Legacy), capturing regular images of each of the four outer planets so scientists can study their changes over time.

The planets Jupiter, Saturn, Uranus, and Neptune are different in many ways from Earth, as they are gas giants and ice giants rather than rocky planets. But they do have some similar phenomena, such as weather that regularly changes, including epic events like storms that are so large they can be seen from space. Jupiter's Great Red Spot, for example, the big orange-red eye shape that is visible on most images of the planet, is an enormous storm larger than the width of the entire Earth and which has been raging for centuries.

Read more
Jupiter will be at its biggest and brightest this weekend. Here’s how to see it
An image of the planet Jupiter.

This weekend will bring a striking event for sky watchers, as Jupiter is will be at its biggest and brightest. This is a great opportunity to look up and see one of the brightest objects in the sky.

This is occurring because Jupiter will be in opposition on Saturday, December 7, which means that it is directly opposite from the sun as seen from Earth. This happens every 13 months. In addition, Jupiter is at its closest to Earth just one day earlier, on Friday, December 6. This happens because, although Earth and Jupiter both have orbits around the sun that are almost circular, they are not perfectly circular. Both orbits are slightly oval shaped, called elliptical, and in 2022, Jupiter came its closest to Earth in 70 years. This is still affecting the relative closeness of Jupiter and how big it is in the sky.

Read more
Astronomers snap first up-close image of a star outside our galaxy
This image shows an artist’s reconstruction of the star WOH G64, the first star outside our galaxy to be imaged in close-up. It is located at a staggering distance of over 160 000 light-years away in the Large Magellanic Cloud. This artistic impression showcases its main features: an egg-shaped cocoon of dust surrounding the star and a ring or torus of dust. The existence and shape of the latter require more observations to be confirmed.

It's sometimes hard to grasp the scale of our universe, when even our own galaxy is so large and filled with billions of stars. But all of the stars that we have seen in detail are contained within the roughly 100,000 light-year span of our Milky Way galaxy. That is, until now, as astronomers recently observed a star outside of our galaxy up close for the first time.

The researchers looked at star WOH G64, located 160,000 light-years away, using the European Southern Observatory’s Very Large Telescope Interferometer. The image shows the main bulk of the star surrounded by a puffy cocoon of dust and gas.

Read more