Skip to main content

NASA’s InSight lander looks into Mars to study the planet’s core

NASA’s Mars InSight lander may have come to the end of its mission last year, but data from the lander is still being used to contribute to science. Data that the lander collected on marsquakes, seismic events that are similar to earthquakes, has been used to get the best look yet at Mars’s core.

The lander was armed with a highly sensitive seismometer instrument that could detect seismic waves as they moved through the martian interior. By looking at the way in which these waves bounced off boundaries and moved at different speeds through different materials, scientists can work out what the inside of a planet is composed of. The latest findings show that the martian core is around 2,220 miles across, which is smaller than previously thought. The core is also denser than previously believed The results also showed that around one-fifth of the core, which is made up of liquid iron alloy, is composed of sulfur, oxygen, carbon, and hydrogen.

This artist’s concept shows a cutaway of Mars, along with the paths of seismic waves from two separate quakes in 2021. Detected by NASA’s InSight mission, these seismic waves were the first ever identified to enter another planet’s core.
This artist’s concept shows a cutaway of Mars, along with the paths of seismic waves from two separate quakes in 2021. Detected by NASA’s InSight mission, these seismic waves were the first ever identified to enter another planet’s core. NASA/JPL-Caltech/University of Maryland

To learn about the martian core, scientists used data from two marsquakes detected by InSight. One of these quakes was caused by a meteoroid impact, which helped scientists locate the exact source of the waves and model the waves’ movement through the planet’s interior more easily. The marsquakes were also on the larger end of detected quakes, so they had stronger effects.

“These two far-side quakes were among the larger ones heard by InSight,” said Bruce Banerdt, InSight’s principal investigator at NASA’s Jet Propulsion Laboratory, in a statement. “If they hadn’t been so big, we couldn’t have detected them.”

This is one of the last images ever taken by NASA’s InSight Mars lander. Captured on Dec. 11, 2022, the 1,436th Martian day, or sol, of the mission, it shows InSight’s seismometer on the Red Planet’s surface.
This is one of the last images ever taken by NASA’s InSight Mars lander. Captured on December 11, 2022, the 1,436th martian day, or sol, of the mission, it shows InSight’s seismometer on the red planet’s surface. NASA/JPL-Caltech

One challenge for InSight was that the quakes originated on the other side of the planet from the lander, which is why they are referred to as “far-side.” That makes them harder to detect, but it also means that studying them can give more useful information as the waves travel through more of the planet.

“We needed both luck and skill to find, and then use, these quakes,” said lead author of the research, Jessica Irving of the University of Bristol in the U.K. “Far-side quakes are intrinsically harder to detect because a great deal of energy is lost or diverted away as seismic waves travel through the planet.”

Using data from InSight, researchers are able to get more and more information about Mars’s interior structure, which can help them to understand how the planet formed — and that can be relevant to understanding how other planets formed to, including the Earth.

The research is published in the journal Proceedings of the National Academies of Sciences.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
How your aurora photographs are helping NASA study solar storms
A coronal aurora appeared over southwestern British Columbia on May 10, 2024.

A coronal aurora appears over southwestern British Columbia on May 10, 2024. NASA/Mara Johnson-Groh

This week has seen one of the most dramatic solar storms in decades, leading to views of auroras seen around the world as charged particles from the sun interacted with Earth's atmosphere. But the events weren't only notable for the gorgeous colors seen in the sky -- they are also a way for scientists to learn about the sun and how its activity varies over time.

Read more
NASA selects 9 companies to work on low-cost Mars projects
This mosaic is made up of more than 100 images captured by NASA’s Viking 1 orbiter, which operated around Mars from 1976 to 1980. The scar across the center of the planet is the vast Valles Marineris canyon system.

NASA is expanding its plans for Mars, looking at not only a big, high-budget, long-term project to bring back a sample from Mars but also smaller, lower-cost missions to enable exploration of the red planet. The agency recently announced it has selected nine private companies that will perform a total of 12 studies into small-scale projects for enabling Mars science.

The companies include big names in aerospace like Lockheed Martin and United Launch Services, but also smaller companies like Redwire Space and Astrobotic, which recently landed on the surface of the moon. Each project will get a 12-week study to be completed this summer, with NASA looking at the results to see if it will incorporate any of the ideas into its future Mars exploration plans.

Read more
NASA video maps all 72 flights taken by Mars Ingenuity helicopter
NASA's Ingenuity helicopter.

NASA has shared a video (above) that maps all of the flights taken on Mars by its trailblazing Ingenuity helicopter.

Ingenuity became the first aircraft to achieve powered, controlled flight on another planet when its rotors fired up for the first time to carry it above the martian surface in April 2021.

Read more