Skip to main content

Mars subsurface holds potential for microbial life, study suggests

The Perseverance rover is currently heading across Mars to search for evidence that there was once microbial life living there. Now, new research suggests that the area beneath the planet’s surface, called the subsurface, might be potentially hospitable for life.

Even though much of life as we know it relies directly or indirectly on sunlight, there are environments in which life can flourish even without sunlight. On our planet, these ecosystems can be found in deep caves or at the bottom of the ocean around thermal vents. Researchers believe that the Martian subsurface could be similarly habitable for microorganisms.

This is similar to a phenomenon found on Earth, where bacteria can survive underground without sunlight thanks to chemical reactions between rocks and water such as radiolysis where radioactive elements react with water to produce hydrogen and oxygen.

To understand what the Martian subsurface is made of, researchers can look at meteorites that have landed on Earth from Mars and analyze their composition. The researchers in the new study found evidence of radioactive elements in Mars meteorites, as well as rocks with large enough pores to trap water.  That means there is evidence that subsurface rocks could provide a home for bacteria if they were in contact with water.

“The big implication here for subsurface exploration science is that wherever you have groundwater on Mars, there’s a good chance that you have enough chemical energy to support subsurface microbial life,” said lead author of the study Jesse Tarnas, a postdoctoral researcher at NASA’s Jet Propulsion Laboratory and Brown University, in a statement. “We don’t know whether life ever got started beneath the surface of Mars, but if it did, we think there would be ample energy there to sustain it right up to today.”

This opens up a new opportunity for research in the search for life, by digging down beneath the Mars surface.

“The subsurface is one of the frontiers in Mars exploration,” Brown University professor Jack Mustard said. “We’ve investigated the atmosphere, mapped the surface with different wavelengths of light, and landed on the surface in half-a-dozen places, and that work continues to tell us so much about the planet’s past. But if we want to think about the possibility of present-day life, the subsurface is absolutely going to be where the action is.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA needs a new approach for its challenging Mars Sample Return mission
An illustration of NASA's Sample Return Lander shows it tossing a rocket in the air like a toy from the surface of Mars.

NASA has shared an update on its beleaguered Mars Sample Return mission, admitting that its previous plan was too ambitious and announcing that it will now be looking for new ideas to make the mission happen. The idea is to send a mission to collect samples from the surface of Mars and return them to Earth for study. It's been a long-term goal of planetary science researchers, but one that is proving costly and difficult to put into practice.

The Perseverance rover has already collected and sealed a number of samples of Mars rock as it journeys around the Jezero Crater, and has left these samples in a sample cache ready to be collected.  However, getting them back to Earth in the previous plan required sending a vehicle to Mars, getting it to land on the surface, sending out another rover to collect the samples and bring them back, launching a rocket from the planet's surface (something which has never been done before), and then having this rocket rendezvous with another spacecraft to carry them back to Earth. That level of complexity was just too much to be feasible within a reasonable budget, NASA Administrator Bill Nelson announced this week.

Read more
This beautiful nebula holds a starry mystery at its heart
This image, taken with the VLT Survey Telescope hosted at ESO’s Paranal Observatory, shows the beautiful nebula NGC 6164/6165, also known as the Dragon’s Egg. The nebula is a cloud of gas and dust surrounding a pair of stars called HD 148937.

A gorgeous nebula turns out to hold a surprise at its center: a pair of stars that don't match as they should. Researchers looking at the beautiful NGC 6164/6165 nebula were surprised to learn that one of the pair of stars it hosts appears to be much older than the other, giving clues to the dramatic situation in which the nebula was born.

Pairs of stars aren't unusual in nebulae, but they are typically very similar. Normally, you would expect a pair to be similar in terms of age and mass, as they would have formed around the same time. But in this nebula, located 3,800 light-years away, one member of the pair is 1.5 million years older than the other, and the younger star is also magnetic, unlike its older counterpart.

Read more
NASA is looking for volunteers for yearlong simulated Mars mission
The CHAPEA mission 1 crew (from left: Nathan Jones, Ross Brockwell, Kelly Haston, Anca Selariu) exit a prototype of a pressurized rover and make their way to the CHAPEA facility ahead of their entry into the habitat on June 25, 2023.

If you've ever wanted to visit Mars, then NASA has an offer for you. Though the agency isn't sending humans to the red planet quite yet, it is preparing for a future crewed Mars mission by creating a simulated mission here on Earth -- and it's looking for volunteers.

Simulated missions look at people's psychological and health responses to conditions similar to what astronauts would experience on a deep space mission. In the case of the Mars mission, called Crew Health and Performance Exploration Analog or CHAPEA, the aim is to simulate a Martian environment using a 3D-printed habitat and a set of Mars-related tasks that crew members must perform.

Read more