Skip to main content

NASA wants to send a robotic mission to search for ice on Mars

This artist illustration depicts four orbiters as part of the International Mars Ice Mapper (I-MIM) mission concept. Low and to the left, an orbiter passes above the Martian surface, detecting buried water ice through a radar instrument and large reflector antenna. Circling Mars at a higher altitude are three telecommunications orbiters with one shown relaying data back to Earth.
This artist illustration depicts four orbiters as part of the International Mars Ice Mapper (I-MIM) mission concept. Low and to the left, an orbiter passes above the Martian surface, detecting buried water ice through a radar instrument and large reflector antenna. Circling Mars at a higher altitude are three telecommunications orbiters with one shown relaying data back to Earth.  NASA

If we ever want to send humans to Mars, we’ll need to find resources there which can help sustain a mission. One of the most essential resources for crewed missions is water, and now international space agencies want to find a way to locate it on the red planet.

NASA has partnered with the Italian Space Agency (ASI), the Canadian Space Agency (CSA), and the Japan Aerospace Exploration Agency (JAXA) to announce they plan to investigate building a robotic orbiter called the Mars Ice Mapper, which would search for and map the location and depth of sub-surface water ice on Mars.

Scientists know that there is plenty of ice at Mars’s poles and in large craters, but they also want to know where ice is located on the rest of the planet. There is thought to be plentiful ice just below the surface in many areas, which would potentially be a very useful resource for future crewed missions there. Instead of having to trek all the way to the poles for ice, future astronauts could dig it out of the ground — providing they know where to look.

The idea is that robotic missions like the Mars Ice Mapper could pave the way for human missions, NASA officials explained. “This innovative partnership model for Mars Ice Mapper combines our global experience and allows for cost-sharing across the board to make this mission more feasible for all interested parties,” said Jim Watzin, NASA’s senior advisor for agency architectures and mission alignment, in a statement. “Human and robotic exploration go hand in hand, with the latter helping pave the way for smarter, safer human missions farther into the solar system. Together, we can help prepare humanity for our next giant leap — the first human mission to Mars.”

As well as assisting in human missions, learning more about ice on Mars would be scientifically valuable too. If researchers were able to collect ice cores from the planet, for example, they could see a record of the geological history of the planet. It could also contribute to the search for evidence of ancient life there.

“In addition to supporting plans for future human missions to Mars, learning more about subsurface ice will bring significant opportunities for scientific discovery,” said Eric Ianson, NASA Planetary Science Division Deputy Director and Mars Exploration Program Director. “Mapping near-surface water ice would reveal an as-yet hidden part of the Martian hydrosphere and the layering above it, which can help uncover the history of environmental change on Mars and lead to our ability to answer fundamental questions about whether Mars was ever home to microbial life or still might be today.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA gives green light to mission to send car-sized drone to Saturn moon
An artist's impression of NASA's Dragonfly drone.

NASA’s Mars helicopter mission is now well and truly over, but following in its footsteps is an even more complex flying machine that's heading for Saturn’s largest moon.

The space agency on Tuesday gave the green light to the Dragonfly drone mission to Titan. The announcement means the design of the eight-rotor aircraft can now move toward completion, followed by construction and a testing regime to confirm the operability of the machine and its science instruments.

Read more
NASA needs a new approach for its challenging Mars Sample Return mission
An illustration of NASA's Sample Return Lander shows it tossing a rocket in the air like a toy from the surface of Mars.

NASA has shared an update on its beleaguered Mars Sample Return mission, admitting that its previous plan was too ambitious and announcing that it will now be looking for new ideas to make the mission happen. The idea is to send a mission to collect samples from the surface of Mars and return them to Earth for study. It's been a long-term goal of planetary science researchers, but one that is proving costly and difficult to put into practice.

The Perseverance rover has already collected and sealed a number of samples of Mars rock as it journeys around the Jezero Crater, and has left these samples in a sample cache ready to be collected.  However, getting them back to Earth in the previous plan required sending a vehicle to Mars, getting it to land on the surface, sending out another rover to collect the samples and bring them back, launching a rocket from the planet's surface (something which has never been done before), and then having this rocket rendezvous with another spacecraft to carry them back to Earth. That level of complexity was just too much to be feasible within a reasonable budget, NASA Administrator Bill Nelson announced this week.

Read more
The NASA Mars helicopter’s work is not done, it turns out
The Ingenuity helicopter on the surface of Mars, in an image taken by the Perseverance rover. Ingenuity recently made its 50th flight.

NASA’s Mars helicopter, Ingenuity, has been grounded since January 18 after suffering damage to one of its rotors as it came in to land.

The team at NASA’s Jet Propulsion Laboratory (JPL), which oversees the Ingenuity mission, celebrated the plucky helicopter for achieving way more flights on the red planet than anyone had expected -- 72 in all -- and becoming the first aircraft to achieve powered, controlled flight on another planet.

Read more