Skip to main content

Here’s how NASA’s Perseverance rover will collect samples from martian surface

NASA’s Perseverance Mars Rover Sample Caching System

In just a few months, NASA will launch its newest rover, Perseverance, on its journey to Mars. The rover will search for evidence of ancient life on the planet, including the collection of martian rock and soil samples. And if you’ve ever wondered how a robot would go about collecting a sample from another planet, NASA has shared more information about how the process works.

Recommended Videos

Comparing the Perseverance mission to Mars to the Apollo mission to the moon, Adam Steltzner, chief engineer for the Mars 2020 Perseverance rover mission at NASA’s Jet Propulsion Laboratory, pointed out the importance of humans in traditional sample collection: “While you cannot help but marvel at what was achieved back in the days of Apollo, they did have one thing going for them we don’t: Boots on the ground,” he said in a statement. “For us to collect the first samples of Mars for return to Earth, in place of two astronauts we have three robots that have to work with the precision of a Swiss watch.”

To achieve this, the rover will use its Sample Caching System. The system includes a rotating array of drill bits to allow the rover to dig into different sorts of rock and soil, plus abrasion bits to remove the top layer of a rock and also the rover’s spectrometry instruments to analyze samples.

“Essentially, after our rotary percussive drill takes a core sample, it will turn around and dock with one of the four docking cones of the bit carousel,” Steltzner explained. “Then the bit carousel rotates that Mars-filled drill bit and a sample tube down inside the rover to a location where our sample handling arm can grab it. That arm pulls the filled sample tube out of the drill bit and takes it to be imaged by a camera inside the Sample Caching System.”

Engineers and technicians working on the Mars 2020 Perseverance team
Engineers and technicians working on the Mars 2020 Perseverance team insert 39 sample tubes into the belly of the rover. Each tube is sheathed in a gold-colored cylindrical enclosure to protect it from contamination. Perseverance rover will carry 43 sample tubes to Mars’ Jezero Crater. The image was taken at NASA’s Kennedy Space Center in Florida on May 20, 2020. NASA/JPL-Caltech

In total, the Sample Caching System has an incredible 3,000 parts, all of which must work in unison to drill, handle, and store samples of the martian rock and soil.

“It sounds like a lot, but you begin to realize the need for complexity when you consider the Sample Caching System is tasked with autonomously drilling into Mars rock, pulling out intact core samples and then sealing them hermetically in hyper-sterile vessels that are essentially free of any Earth-originating organic material that could get in the way of future analysis,” Steltzner said. “In terms of technology, it is the most complicated, most sophisticated mechanism that we have ever built, tested, and readied for spaceflight.”

Once a sample has been collected and imaged, it is sealed up in its tube and returned to storage inside the rover. This process is complex enough, but actually getting the samples back to Earth is a whole new challenge. The current plan involves sending two spacecraft to Mars — one to land on the planet and rendezvous with the rover to collect the samples, then ascend into orbit. The second craft would rendezvous with this first craft and carry the samples back to Earth.

NASA hopes to land the first sample return craft in 2028, and return the samples to Earth by 2031.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
How NASA is using AI on the Perseverance rover to study Mars rocks
akdjf alkjdhf lk

Space engineers have been using AI in rovers for some time now -- hence why today's Mars explorers are able to pick a safe landing site and to drive around a region autonomously. But something they haven't been able to do before now is to do science themselves, as most of that work is done by scientists on Earth who analyze data and point the rover toward targets they want to investigate.

Now, though, NASA's Perseverance rover is taking the first steps toward autonomous science investigation on Mars. The rover has been testing out an AI capability for the last three years, which allows it to search for and identify particular minerals in Mars rocks. The system works using the rover's PIXL instrument (Planetary Instrument for X-ray Lithochemistry), a spectrometer that uses light to analyze what rocks are made of. The software, called adaptive sampling, looks though PIXL's data and identifies minerals to be studied in more detail.

Read more
NASA needs a new approach for its challenging Mars Sample Return mission
An illustration of NASA's Sample Return Lander shows it tossing a rocket in the air like a toy from the surface of Mars.

NASA has shared an update on its beleaguered Mars Sample Return mission, admitting that its previous plan was too ambitious and announcing that it will now be looking for new ideas to make the mission happen. The idea is to send a mission to collect samples from the surface of Mars and return them to Earth for study. It's been a long-term goal of planetary science researchers, but one that is proving costly and difficult to put into practice.

The Perseverance rover has already collected and sealed a number of samples of Mars rock as it journeys around the Jezero Crater, and has left these samples in a sample cache ready to be collected.  However, getting them back to Earth in the previous plan required sending a vehicle to Mars, getting it to land on the surface, sending out another rover to collect the samples and bring them back, launching a rocket from the planet's surface (something which has never been done before), and then having this rocket rendezvous with another spacecraft to carry them back to Earth. That level of complexity was just too much to be feasible within a reasonable budget, NASA Administrator Bill Nelson announced this week.

Read more
NASA astronauts need good weather for Crew-8 launch. Here’s how it’s looking
A SpaceX Falcon 9 rocket during a static fire test.

UPDATE: SpaceX and NASA are now targeting 11:16 p.m. ET on Saturday, March 2 for the launch of Crew-8.

SpaceX is preparing to launch three NASA astronauts and one Roscosmos cosmonaut to the International Space Station (ISS).

Read more