Skip to main content

Here’s how NASA’s Perseverance rover will collect samples from martian surface

NASA’s Perseverance Mars Rover Sample Caching System

In just a few months, NASA will launch its newest rover, Perseverance, on its journey to Mars. The rover will search for evidence of ancient life on the planet, including the collection of martian rock and soil samples. And if you’ve ever wondered how a robot would go about collecting a sample from another planet, NASA has shared more information about how the process works.

Recommended Videos

Comparing the Perseverance mission to Mars to the Apollo mission to the moon, Adam Steltzner, chief engineer for the Mars 2020 Perseverance rover mission at NASA’s Jet Propulsion Laboratory, pointed out the importance of humans in traditional sample collection: “While you cannot help but marvel at what was achieved back in the days of Apollo, they did have one thing going for them we don’t: Boots on the ground,” he said in a statement. “For us to collect the first samples of Mars for return to Earth, in place of two astronauts we have three robots that have to work with the precision of a Swiss watch.”

Please enable Javascript to view this content

To achieve this, the rover will use its Sample Caching System. The system includes a rotating array of drill bits to allow the rover to dig into different sorts of rock and soil, plus abrasion bits to remove the top layer of a rock and also the rover’s spectrometry instruments to analyze samples.

“Essentially, after our rotary percussive drill takes a core sample, it will turn around and dock with one of the four docking cones of the bit carousel,” Steltzner explained. “Then the bit carousel rotates that Mars-filled drill bit and a sample tube down inside the rover to a location where our sample handling arm can grab it. That arm pulls the filled sample tube out of the drill bit and takes it to be imaged by a camera inside the Sample Caching System.”

Engineers and technicians working on the Mars 2020 Perseverance team
Engineers and technicians working on the Mars 2020 Perseverance team insert 39 sample tubes into the belly of the rover. Each tube is sheathed in a gold-colored cylindrical enclosure to protect it from contamination. Perseverance rover will carry 43 sample tubes to Mars’ Jezero Crater. The image was taken at NASA’s Kennedy Space Center in Florida on May 20, 2020. NASA/JPL-Caltech

In total, the Sample Caching System has an incredible 3,000 parts, all of which must work in unison to drill, handle, and store samples of the martian rock and soil.

“It sounds like a lot, but you begin to realize the need for complexity when you consider the Sample Caching System is tasked with autonomously drilling into Mars rock, pulling out intact core samples and then sealing them hermetically in hyper-sterile vessels that are essentially free of any Earth-originating organic material that could get in the way of future analysis,” Steltzner said. “In terms of technology, it is the most complicated, most sophisticated mechanism that we have ever built, tested, and readied for spaceflight.”

Once a sample has been collected and imaged, it is sealed up in its tube and returned to storage inside the rover. This process is complex enough, but actually getting the samples back to Earth is a whole new challenge. The current plan involves sending two spacecraft to Mars — one to land on the planet and rendezvous with the rover to collect the samples, then ascend into orbit. The second craft would rendezvous with this first craft and carry the samples back to Earth.

NASA hopes to land the first sample return craft in 2028, and return the samples to Earth by 2031.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA astronauts need good weather for Crew-8 launch. Here’s how it’s looking
A SpaceX Falcon 9 rocket during a static fire test.

UPDATE: SpaceX and NASA are now targeting 11:16 p.m. ET on Saturday, March 2 for the launch of Crew-8.

SpaceX is preparing to launch three NASA astronauts and one Roscosmos cosmonaut to the International Space Station (ISS).

Read more
NASA has collected a whopping 121 grams of sample from asteroid Bennu
A view of eight sample trays containing the final material from asteroid Bennu. The dust and rocks were poured into the trays from the top plate of the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) head. 51.2 grams were collected from this pour, bringing the final mass of asteroid sample to 121.6 grams.

When the OSIRIS-REx dropped a capsule in the Utah desert last year, it made headlines around the globe for returning NASA's first sample of an asteroid to Earth. Scientists were eager to get their hands on the sample of asteroid Bennu to learn about the early formation of the solar system, but actually getting at the sample proved to be rather trickier than imagined.

Scientists were able to extract 70 grams of material from the sample canister relatively easily, making it by far the largest asteroid sample ever brought to Earth, but two troublesome fasteners made it difficult to extract the rest of the sample. The team knew it had plenty more sample inside, but it had to be patient as special new tools were constructed that could undo the fasteners without losing a single gram of the precious sample.

Read more
NASA’s damaged Ingenuity helicopter spotted in Mars rover photo
A Mars landscape with NASA's Ingenuity helicopter in the background.

A Mars landscape with NASA's Ingenuity helicopter seen on the dune in the distance. NASA/JPL-Caltech/ASU

NASA’s Mars rover, Perseverance, has captured an image (above) showing the final resting place of the damaged Mars helicopter, Ingenuity.

Read more