Skip to main content

Saturn’s rings are raining down particles on its atmosphere

Saturn’s famous rings don’t just give the planet its distinctive look — they also affect its weather. New research using the Hubble Space Telescope shows that the icy rings actually heat up Saturn’s atmosphere, a phenomenon that could help us learn more about distant exoplanets as well.

Saturn’s rings are made up of small particles of ice, forming ring shapes that reach 175,000 miles away from the planet. And it seems that it is these icy particles that are, somewhat counterintuitively, causing heating in the planet’s atmosphere. Researchers looked at observations from Hubble as well as the Cassini and Voyager missions and saw more ultraviolet radiation than they expected in Saturn’s upper atmosphere, indicating heating there.

This is a composite image showing the Saturn Lyman-alpha bulge, an emission from hydrogen which is a persistent and unexpected excess detected by three distinct NASA missions, namely Voyager 1, Cassini, and the Hubble Space Telescope between 1980 and 2017.
This is a composite image showing the Saturn Lyman-alpha bulge, an emission from hydrogen which is a persistent and unexpected excess detected by three distinct NASA missions, namely Voyager 1, Cassini, and the Hubble Space Telescope between 1980 and 2017. SCIENCE: NASA, ESA, Lotfi Ben-Jaffel (IAP & LPL)

This heating is thought to be caused by particles from the rings, which are raining down onto the atmosphere due to forces like solar winds or micrometeorites. Over time, the rings are gradually losing particles as they fall into the planet’s atmosphere and heating the hydrogen there — and while scientists already knew about the degrading rings, the heating effect is a new finding.

“Though the slow disintegration of the rings is well known, its influence on the atomic hydrogen of the planet is a surprise. From the Cassini probe, we already knew about the rings’ influence. However, we knew nothing about the atomic hydrogen content,” said lead author of the research, Lotfi Ben-Jaffel of the Institute of Astrophysics in Paris, in a statement.

These indications of ultraviolet emissions had been seen before in observations from Cassini and the two Voyager probes which passed Saturn in the 1980s. But scientists hadn’t been sure whether the effect was real, or just a result of noise. By looking at these data alongside measurements from Hubble, the researchers were able to see the effect was a real one.

“When everything was calibrated, we saw clearly that the spectra are consistent across all the missions. This was possible because we have the same reference point, from Hubble, on the rate of transfer of energy from the atmosphere as measured over decades,” Ben-Jaffel said. “It was really a surprise for me. I just plotted the different light distribution data together, and then I realized, wow — it’s the same.”

One exciting element of this finding is that it could be applied to planets outside our solar system, called exoplanets, as well. If researchers can spot similar ultraviolet radiation coming from distant planets, that could suggest that they have rings of their own.

“We are just at the beginning of this ring characterization effect on the upper atmosphere of a planet,” Ben-Jaffel said. “We eventually want to have a global approach that would yield a real signature about the atmospheres on distant worlds. One of the goals of this study is to see how we can apply it to planets orbiting other stars. Call it the search for ‘exo-rings.'”

The research is published in the Planetary Science Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble captures a pair of galaxies merging into an unusual ring shape
The galaxy merger Arp-Madore 417-391 steals the spotlight in this image from the NASA/ESA Hubble Space Telescope. The Arp-Madore catalog is a collection of particularly peculiar galaxies spread throughout the southern sky, and includes a collection of subtly interacting galaxies as well as more spectacular colliding galaxies. Arp-Madore 417-391, which lies around 670 million light-years away in the constellation Eridanus in the southern celestial hemisphere, is one such galactic collision. The two galaxies were distorted by gravity and twisted into a colossal ring, leaving their cores nestled side by side.

This week's image from the Hubble Space Telescope shows a collection of galaxies, with an unusual merging pair as the star of the show. The merging galaxy pair Arp-Madore 417-391 is located 670 million light-years from Earth in the constellation of Eridanus, which is in the southern celestial hemisphere.

The pair are classified as a "peculiar galaxy" because of the way their shapes have been distorted by their interaction. "The Arp-Madore catalog is a collection of particularly peculiar galaxies spread throughout the southern sky, and includes a collection of subtly interacting galaxie,s as well as more spectacular colliding galaxies," Hubble scientists write.

Read more
Long-lost moon could explain how Saturn got its rings
Artistic rendering of the moon Chrysalis disintegrating in Saturn’s intense gravity field. The chunks of icy rock eventually collided and shattered into smaller pieces that became distributed in the thin ring we see today.

Saturn is famed for its beautiful rings, but these rings are something of a puzzle to astronomers. Originally, it was thought that they must have formed around the same time as the planet, over 4 billion years ago. But data from the Cassini spacecraft suggested the rings might be much younger than that, forming less than 100 million years ago. Now, a new study suggests that the rings could have been formed from a long-lost moon, explaining several of Saturn's peculiarities.

Saturn rotates with a tilt of 27 degrees, slightly off the plane at which it orbits the sun, and its rings are tilted too. Recently published research proposes that both of these factors can be explained by a former moon, named Chrysalis, which came close to the planet and was torn apart. Most of the moon was absorbed by the planet, but the rest of it created the stunning rings.

Read more
Betelgeuse blew its top, leaving an interior jiggling like jelly
Illustration of changes in the brightness of the red supergiant star Betelgeuse.

One of the brightest stars in the sky, the nearby red supergiant Betelgeuse, has been the source of fascination in the last few years as it dimmed and then re-brightened dramatically. Now, new data from the Hubble Space Telescope shows that the star blew off a huge chunk of its mass in 2019, creating a cloud of dust that obscured its light and caused the dimming effect.

The explosion of such a big chunk of matter is a rare event called a surface mass ejection, similar to the coronal mass ejection events seen in our sun and other stars but much, much bigger. The surface mass ejection blew off an almost unimaginable 400 billion times as much mass as a standard coronal mass ejection, creating huge changes to the star's structure and behavior.

Read more