Skip to main content

See and hear Stephan’s Quintet in a whole new way with NASA visualizations

One of the first targets observed by the James Webb Space Telescope when it began science operations last year was Stephan’s Quintet, a group of five galaxies locked close together in a complex structure. Now, that data from Webb has been combined with data from other telescopes to give a new view of this special object — and even to create a way to listen to it.

The project used the infrared data from Webb combined with visible light, X-ray, and other infrared observations from the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory. By combining all these different views of the same object, researchers were able to create a 3D view of the group which is visualized in a video:

Stephan's Quintet: A Multi-wavelength Exploration

The idea is to help both scientists and the public get a better understanding of this special group of galaxies. “Shifting from a 2D image to a 3D medium can help viewers really understand the structure of Stephan’s Quintet,” said leader of the team, visualization scientist Frank Summers of the Space Telescope Science Institute, in a statement. “Each observatory that has spent time looking at these five galaxies has enabled us to gather diverse insights and form richer stories about this complex, compact group.”

A new visualization explores the galaxy group Stephan's Quintet by using observations in visible, infrared, and X-ray light. The sequence contrasts images from NASA's Hubble Space Telescope, Spitzer Space Telescope, Webb Space Telescope, and Chandra X-ray Observatory to provide insights across the electromagnetic spectrum.
A new visualization explores the galaxy group Stephan’s Quintet by using observations in visible, infrared, and X-ray light. The sequence contrasts images from NASA’s Hubble Space Telescope, Spitzer Space Telescope, Webb Space Telescope, and Chandra X-ray Observatory to provide insights across the electromagnetic spectrum. Visualization: Frank Summers (STScI), Alyssa Pagan (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Joseph Olmsted (STScI), Greg Bacon (STScI)

As well as the visualization, another way in which you can experience Stephan’s Quintet is through sonification. This takes a visual image and interprets it through sound. In this case, the sound starts at the top of the image and then moves downward, with the pitch being higher for brighter sections and lower for dimmer ones, and the galaxies represented by changing frequencies. The different types of objects within the image are also given different sounds, with a marimba for the stars and background galaxies and cymbals for the closer, brighter stars which have diffraction spikes.

Stephan's Quintet Sonification from Chandra X-Ray Observatory, NASA Telescopes

The result is an audio file that in some way captures the image, with its different wavelengths showing features of the galaxy group.

“Astronomy has always been very visual, but there’s no reason why we have to represent the data through that manner alone,” said leader of the sonification, Kimberly Arcand of the Chandra X-ray Center. “This type of depiction is taking the scientific story of Stephan’s Quintet — the deep, dense, and beautiful dataset — and translating it into an auditory experience.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more
One half of this wild exoplanet reaches temperatures of 1,450 degrees Fahrenheit
webb wasp 39b dayside nightside stsci 01j2f12rm1s3n39yj938nhsf93 png

This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from JWST and other space- and ground-based telescopes. Data collected by its NIRSpec (Near-Infrared Spectrograph) show variations between the morning and evening atmosphere of the planet. NASA, ESA, CSA, Ralf Crawford (STScI)

One of the ground-breaking abilities of the James Webb Space Telescope is that researchers can use it to not only detect distant planets but also to peer into their atmosphere. Now, new research using Webb has uncovered differing conditions between morning and evening on a distant exoplanet, the first time such differences have been observed on a planet outside our solar system.

Read more
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more