Skip to main content

This tiny exoplanet 35 light-years away is half the mass of Venus

The L 98-59b planet.
This artist’s impression shows L 98-59b, one of the planets in the L 98-59 system that’s 35 light-years away. The system contains four confirmed rocky planets with a potential fifth, the farthest from the star, unconfirmed. ESO/M. Kornmesser

Of the roughly 4,200 planets outside our solar system discovered thus far, most are larger than Earth for the simple reason that it’s easier to spot a larger planet as it has a more noticeable impact on the environment around it. That’s why it’s notable when smaller exoplanets are discovered, like the recently identified planet L 98-59b, which is just half the mass of Venus.

Recommended Videos

The planet, orbiting the star L 98-59, which is just 35 light-years away, is part of a system of four or possibly five planets that are comparable to the rocky planets in the inner part of our solar system. The diminutive planet is the closest of the system to its star and is the smallest ever discovered using a method called radial velocity. This works by detecting a tiny wobble in the host star, which is caused by the gravity of the planet as it orbits, and this detection was made using the European Southern Observatory’s Very Large Telescope (VLT), which is located in the Atacama desert in Chile.

The other planets in this system are intriguing as well. One of them may even be habitable, as it is in the habitable zone (the distance from a star at which liquid water could exist on a planet’s surface), and it is a rocky planet like Earth or Venus.

“The planet in the habitable zone may have an atmosphere that could protect and support life,” said one of the authors, María Rosa Zapatero Osorio of the Centre for Astrobiology in Madrid, Spain, in a statement.

This makes the system a great target for further investigations with new and upcoming tools, like the James Webb Space Telescope, which will be able to detect whether exoplanets have atmospheres.

“This system announces what is to come,” said lead author Olivier Demangeon of the University of Porto. “We, as a society, have been chasing terrestrial planets since the birth of astronomy, and now we are finally getting closer and closer to the detection of a terrestrial planet in the habitable zone of its star, of which we could study the atmosphere.”

The findings are published in the journal Astronomy & Astrophysics.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
See planets being born in new images from the Very Large Telescope
This composite image shows the MWC 758 planet-forming disc, located about 500 light-years away in the Taurus region, as seen with two different facilities. The yellow colour represents infrared observations obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope (VLT). The blue regions on the other hand correspond to observations performed with the Atacama Large Millimeter/submillimeter Array (ALMA).

Astronomers have used the Very Large Telescope to peer into the disks of matter from which exoplanets form, looking at more than 80 young stars to see which may have planets forming around them. This is the largest study to date on these planet-forming disks, which are often found within the same huge clouds of dust and gas that stars form within.

A total of 86 young stars were studied in three regions known to host star formation: Taurus and Chamaeleon I, each located around 600 light-years away, and Orion, a famous stellar nursery located around 1,600 light-years away. The researchers took images of the disks around the stars, looking at their structures for clues about how different types of planets can form.

Read more
See a festive cosmic chicken captured by the VLT Survey Telescope
The Running Chicken Nebula comprises several clouds, all of which we can see in this vast image from the VLT Survey Telescope (VST), hosted at ESO’s Paranal site. This 1.5-billion pixel image spans an area in the sky of about 25 full Moons. The clouds shown in wispy pink plumes are full of gas and dust, illuminated by the young and hot stars within them.

A new image from the VLT Survey Telescope shows a beautiful region called the Running Chicken Nebula, which makes for a striking festive scene. Located 6,500 light-years away, this region is full of bright young stars that sculpt the clouds of dust and gas around them to form complex structures.

The Running Chicken Nebula comprises several clouds, all of which we can see in this vast image from the VLT Survey Telescope (VST), hosted at European Southern Observatory’s Paranal site. This 1.5-billion-pixel image spans an area in the sky of about 25 full moons. The clouds shown in wispy pink plumes are full of gas and dust, and are illuminated by the young and hot stars within them. ESO/VPHAS+ team. Acknowledgement: CASU

Read more
How astronomers used James Webb to detect methane in the atmosphere of an exoplanet
An artists rendering of a blue and white exoplanet known as WASP-80 b, set on a star-studded black background. Alternating horizontal layers of cloudy white, grey and blue cover the planets surface. To the right of the planet, a rendering of the chemical methane is depicted with four hydrogen atoms bonded to a central carbon atom, representing methane within the exoplanet's atmosphere. An artist’s rendering of the warm exoplanet WASP-80 b whose color may appear bluish to human eyes due to the lack of high-altitude clouds and the presence of atmospheric methane identified by NASA’s James Webb Space Telescope, similar to the planets Uranus and Neptune in our own solar system.

One of the amazing abilities of the James Webb Space Telescope is not just detecting the presence of far-off planets, but also being able to peer into their atmospheres to see what they are composed of. With previous telescopes, this was extremely difficult to do because they lacked the powerful instruments needed for this kind of analysis, but scientists using Webb recently announced they had made a rare detection of methane in an exoplanet atmosphere.

Scientists studied the planet WASP-80 b using Webb's NIRCam instrument, which is best known as a camera but also has a slitless spectroscopy mode which allows it to split incoming light into different wavelengths. By looking at which wavelengths are missing because they have been absorbed by the target, researchers can tell what an object -- in this case, a planetary atmosphere -- is composed of.

Read more