Skip to main content

James Webb captures the stunning outflows from an infant star

A gorgeous new image from the James Webb Space Telescope shows a dramatic sight created by the outbursts of energy coming from a very young star. Called a Herbig-Haro object, this particular example is named HH 211 and shows the effects of huge jets of gas that are thrown out by the star and which collide with clouds of dust and gas to create stunning shapes.

The image was taken in the infrared wavelength in which Webb operates, which is ideal for observing hot objects like new stars without the view being blocked by dust, which is opaque in the visible light wavelength. The observations were made using Webb’s NIRCam instrument.

NASA’s James Webb Space Telescope’s high resolution, near-infrared look at Herbig-Haro 211 reveals exquisite detail of the outflow of a young star, an infantile analogue of our Sun. Herbig-Haro objects are formed when stellar winds or jets of gas spewing from newborn stars form shock waves colliding with nearby gas and dust at high speeds.
NASA’s James Webb Space Telescope’s high-resolution, near-infrared look at Herbig-Haro 211 reveals exquisite detail of the outflow of a young star, an infantile analogue of our sun. Herbig-Haro objects are formed when stellar winds or jets of gas spewing from newborn stars form shock waves that collide with nearby gas and dust at high speeds. ESA/Webb, NASA, CSA, Tom Ray (Dublin)

This is the second time Webb has imaged a Herbig-Haro object, as a pair of such objects called HH 46/47 were imaged in July of this year. That image was also taken with NIRCam, though it shows more background stars compared to the new image, while the recent image shows more details around the star at the center.

The star at the center of HH 211 will eventually grow up to become a star similar to our sun, but now it is just a few tens of thousands of years old, compared to our more than 4 billion year old sun. It also has a much smaller mass, at just 8% the mass of the sun. The very young age of the star is the reason for it giving off such powerful jets, as the star is gathering up material from the area around it and then flinging off a small amount of that material from its poles.

As the material travels outward at tremendous speeds of up to 60 miles per second, it creates a wave-like structure of gas that collides with other matter. This collision results in an effect called a bow shock, shaped like a curve, examples of which can be seen in both the lower-left and upper-right portions of the image.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures a unique view of Uranus’s ring system
This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope shows the planet and its rings in new clarity. The Webb image exquisitely captures Uranus’s seasonal north polar cap, including the bright, white, inner cap and the dark lane in the bottom of the polar cap. Uranus’ dim inner and outer rings are also visible in this image, including the elusive Zeta ring—the extremely faint and diffuse ring closest to the planet.

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more
Watch this footage of a shooting star captured from the space station
The International Space Station.

From late this evening into the early hours of Thursday morning, many people will be directing their gaze skyward in the hope of seeing some shooting stars streaking across the sky.

Tonight is the peak of the annual Geminid meteor shower, so the coming hours offer the best chance to witness the effects of Earth passing through a cloud of debris left behind by the 3200 Phaethon asteroid.

Read more