Skip to main content

James Webb captures a stunning colliding pair of galaxies

A recently released image from the James Webb Space Telescope shows the stunning galaxies IC 1623 A and B, located 270 million light-years away, which are in the process of merging. As the two galaxies crash together, they are intersecting and feeding high levels of star formation, creating an area known as a starburst region.

James Webb captured the image using three of its instruments: MIRI, NIRSpec, and NIRCam. Each instrument looked in a different portion of the infrared to see the different features of the merging galaxy. “This interacting galaxy system is particularly bright at infrared wavelengths, making it a perfect proving ground for Webb’s ability to study luminous galaxies,” Webb scientists write.

This image from the NASA/ESA/CSA James Webb Space Telescope depicts IC 1623, an entwined pair of interacting galaxies which lies around 270 million light-years from Earth in the constellation Cetus. The two galaxies in IC 1623 are plunging headlong into one another in a process known as a galaxy merger. Their collision has ignited a frenzied spate of star formation known as a starburst, creating new stars at a rate more than twenty times that of the Milky Way galaxy.
This image from the NASA/ESA/CSA James Webb Space Telescope depicts IC 1623 is an entwined pair of interacting galaxies which lies around 270 million light-years from Earth in the constellation Cetus. ESA/Webb, NASA & CSA, L. Armus & A. Evans Acknowledgement: R. Colombari

The rapid formation of stars occurs as tidal forces from the gravity of the two galaxies tug at clouds of dust and gas, spurring the birth of new stars. It is also thought that as the two galaxies merge, they may be forming a new supermassive black hole.

This image from the NASA/ESA Hubble Space Telescope depicts IC 1623. It combines data from Hubble’s ACS and WFC3 instruments, gives a familiar visible-light view of these colliding galaxies, where the centres of the individual galaxies are more obscured by dark dust.
This image from the NASA/ESA Hubble Space Telescope also depicts IC 1623. ESA/Hubble & NASA, R. Chandar

The same merging pair of galaxies were previously imaged using the Hubble Space Telescope’s Advanced Camera for Surveys and Wide Field Camera 3 instruments. Taken in the visible light range, this image shows the equivalent of what the human eye would see when looking at the galaxies. The galaxies are darker, particularly in the center, as parts of the image are obscured by dust. By comparing this image to the Webb image above, you can see how Webb’s infrared instruments can peer through the dust to see the structure beneath.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb captures gorgeous image of a Cosmic Tornado
The NASA/ESA/CSA James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light with the NIRCam and MIRI instruments. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object (located within our Milky Way) with a more distant, face-on spiral galaxy in the background.

The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects.

This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the "Cosmic Tornado" because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image.

Read more
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more
James Webb captures a stunning view of the dreamy Flame Nebula
Webb's image of the Flame Nebula

Our universe is host to many beautiful and fascinating objects, and we're lucky enough to be able to view many of them using high tech instruments like the James Webb Space Telescope. A new Webb image shows a new view of the gorgeous Flame Nebula, an emission nebula located in the constellation of Orion.

This nebula is a busy stellar nursery, with many new stars being formed there. But it isn't stars which researchers were interested in when they looked to the nebula -- in this case, they were studying objects called brown dwarfs. Bigger than most planets but smaller than a star, brown dwarfs are too small to sustain fusion in their cores, so they are often referred to as failed stars.

Read more