Skip to main content

One of James Webb’s four instruments is offline following error

The James Webb Space Telescope is experiencing an issue with one of its instruments, the Near Infrared Imager and Slitless Spectrograph, or NIRISS. The instrument is currently offline with no indication of when it will be back online, but engineers are working to address the issue and the telescope hardware remains safe.

As alarming as that might sound, it is not uncommon for such issues to crop up, especially in space telescopes. As performing physical maintenance on space telescopes is extremely difficult, software troubleshooting is done in a slow and careful way to prevent any damage from occurring. That’s why you’ll see instruments on space telescopes like Hubble or the Swift Observatory going into safe mode to protect themselves whenever an issue arises.

Recommended Videos

In the case of James Webb, the problem with the NIRISS instrument was due to a communication delay. “On Sunday, Jan. 15, the James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (NIRISS) experienced a communications delay within the instrument, causing its flight software to time out,” NASA wrote in a statement. “The instrument is currently unavailable for science observations while NASA and the Canadian Space Agency (CSA) work together to determine and correct the root cause of the delay.”

Please enable Javascript to view this content

NIRISS sits alongside a sensor called the Fine Guidance Sensor or FGS which allows the telescope to point at its targets accurately. NIRISS can work as both a camera and a spectrograph and has a special feature called an aperture mask which allows it to block out light from particularly bright sources to better see dimmer sources around them. The instrument is used for tasks like detecting and examining exoplanets and for looking at distant galaxies.

The planned scientific observations which were scheduled to use NIRISS will now be rescheduled, according to NASA.

This comes on the heels of another issue with Webb which occurred in December 2022. A software issue in the attitude control system caused some instruments to enter safe mode on December 7, with science observations being paused. That was fixed by December 20, when all science operations resumed.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb discovers a new type of exoplanet: an exotic ‘steam world’
An artist’s conception of the “steam world” GJ 9827 d, shown in the foreground in blue.

Our solar system has a wide variety of planet types, from tiny rocky Mercury to huge puffy gas giant Jupiter to distant ice giant Uranus. But beyond our own system, there are even more types of exoplanet out there, including water worlds covered in ocean and where life could potentially thrive. Now, researchers using the James Webb Space Telescope have identified a new and exotic type of planet called a steam world, which has an atmosphere almost entirely composed of water vapor.

The planet, called GJ 9827 d, was examined by the Hubble Space Telescope earlier this year and had researchers so intrigued that they wanted to go back for a closer look using Webb. They found that the planet, which is around twice the size of Earth, had a very different atmosphere from the typical hydrogen and helium that is usually seen. Instead, it was full of hot steam.

Read more
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more