Skip to main content

Webb telescope captures Ring Nebula in gorgeous detail

The James Webb Space Telescope has just served up a couple more sublime images, this time showing the Ring Nebula in astonishing detail.

First spotted in the 18th Century and located around 2,500 light-years from Earth, the Ring Nebula’s colorful main ring is made up of gas thrown off by a dying star at the center of the nebula.

This star will eventually become a white dwarf — a very small, dense, and hot core that marks the final evolutionary stage for a star, and one that our own sun will eventually follow, the European Space Agency (ESA) explains on its website.

Webb captured the images using two different cameras. The first one (below) was taken by its near-infrared camera (NIRCam) and shows the intricate details of the filament structure of the inner ring.

The Ring Nebula captured by Webb’s near-infrared camera (NIRCam).
The Ring Nebula captured by Webb’s near-infrared camera (NIRCam). ESA/Webb, NASA, CSA, M. Barlow (University College London), N. Cox (ACRI-ST), R. Wesson (Cardiff University)

The second image (below) used Webb’s mid-infrared instrument (MIRI) to reveal particular details in the concentric features in the outer parts of the nebulae’s ring.

The Ring Nebula captured by Webb's mid-infrared instrument (MIRI).
The Ring Nebula captured by Webb’s mid-infrared instrument (MIRI). ESA/Webb, NASA, CSA, M. Barlow (University College London), N. Cox (ACRI-ST), R. Wesson (Cardiff University)

The Ring Nebula, which ESA describes as being shaped like a “distorted donut,” contains around 20,000 dense globules that are rich in molecular hydrogen. In contrast, the inner region is an area of very hot gas.

“The main shell contains a thin ring of enhanced emission from carbon-based molecules known as polycyclic aromatic hydrocarbons,” ESA said. “Roughly 10 concentric arcs are located just beyond the outer edge of the main ring. The arcs are thought to originate from the interaction of the central star with a low-mass companion orbiting at a distance comparable to that between the Earth and the dwarf planet Pluto. In this way, nebulae like the Ring Nebula reveal a kind of astronomical archaeology, as astronomers study the nebula to learn about the star that created it.”

ESA notes that while the middle of the donut may appear to be empty, in reality, it’s full of lower-density material that stretches both towards and away from us, “creating a shape similar to a rugby ball slotted into the donut’s central gap.”

The Webb telescope is located about a million miles from Earth and recently celebrated its first year of operations.

NASA, the European Space Agency, and the Canadian Space Agency have worked together on the $10 billion endeavor, building and deploying the world’s most powerful space telescope in a quest to make groundbreaking discoveries about the origins of the universe while at the same time searching for faraway planets that could support life.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb snaps a colorful image of a star in the process of forming
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb's instruments: a previous version that was taken in the near-infrared with Webb's NIRCam camera, and new data in the mid-infrared taken with Webb's MIRI instrument.

Read more
See a stunning 3D visualization of astronomy’s most beautiful object
This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light).

This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light). Greg Bacon (STScI), Ralf Crawford (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Christian Nieves (STScI), Joseph Olmsted (STScI), Alyssa Pagan (STScI), Frank Summers (STScI), NASA's Universe of Learning

The Pillars of Creation are perhaps the most famous object in all of astronomy. Part of the Eagle Nebula, this vista was first captured by the Hubble Space Telescope in 1995, and has captivated the public ever since with its dramatic rising pillars of dust and gas that stretch several light-years high. The nebula has been imaged often since then, including again by Hubble in 2014 and more recently by the James Webb Space Telescope in 2022.

Read more
Gorgeous Webb image of Serpens Nebula shows a strange alignment
This image shows the centre of the Serpens Nebula as seen by the NASA/ESA/CSA James Webb Space Telescope’s Near-InfraRed Camera (NIRCam).

The Serpens Nebula, located 1,300 light-years from Earth, is home to a particularly dense cluster of newly forming stars (about 100,000 years old), some of which will eventually grow to the mass of our Sun. Webb’s image of this nebula revealed a grouping of aligned protostellar outflows (seen in the top left). These jets are identified by bright clumpy streaks that appear red, which are shock waves caused when the jet hits the surrounding gas and dust. NASA, ESA, CSA, STScI, K. Pontoppidan (NASA’s Jet Propulsion Laboratory), J. Green (Space Telescope Science Institute)

This stunning new image from the James Webb Space Telescope shows the famous Serpens Nebula, a dense star-forming region where new stars are being born amid clouds of dust and gas. Unlike some other nebulae, which are illuminated by radiation from stars that causes them to glow, this is a type called a reflection nebula, so it only shines due to the light that reflects from other sources.

Read more