Skip to main content

Image of James Webb snapped by the Gaia observatory

The James Webb Space Telescope doesn’t orbit the Earth as the Hubble Space Telescope does. Instead, it orbits the sun in a position called the second Sun-Earth Lagrange point, or L2, where it can remain in a stable orbit with one side pointing toward the sun and the other side remaining in the shade. Webb isn’t alone in this L2 orbit though — other spacecraft are there too, including the European Space Agency (ESA)’s Gaia observatory.

That meant there was an opportunity for Gaia, which arrived at L2 in 2014, to capture an image of its new companion. Last month, the two spacecraft were 600,000 miles apart and Gaia was able to snap a picture of Webb. As Webb is edge-on from the view of Gaia, it only reflects a small amount of light and so it appears as a small speck of light in the image.

Gaia’s sky mapper image showing the James Webb Space Telescope. The reddish colour is artificial, chosen just for illustrative reasons. The frame shows a few relatively bright stars, several faint stars, a few disturbances – and a spacecraft. It is marked by the green arrow.
Gaia’s sky mapper image showing the James Webb Space Telescope. The reddish color is artificial, chosen just for illustrative reasons. The frame shows a few relatively bright stars, several faint stars, a few disturbances – and a spacecraft. It is marked by the green arrow. ESA/Gaia/DPAC

Capturing this image took some planning, which two Gaia scientists, Uli Bastian of Heidelberg University in Germany and Francois Mignard of Nice Observatory in France, began before Webb arrived at L2. As Gaia images the entire sky, they realized it would be able to see Webb as the new telescope passed Gaia’s field of view.

“After Webb had reached its destination at L2, the Gaia scientists calculated when the first opportunity would arise for Gaia to spot Webb, which turned out to be 18 February 2022,” ESA wrote. “After Gaia’s two telescopes had scanned the part of the sky where Webb would be visible, the raw data was downloaded to Earth. In the morning after, Francois sent an email to all people involved. The enthusiastic subject line of the email was ‘JWST: Got it!!'”

It is an impressive feat for Gaia to have taken this image, as the observatory is not designed for taking images of individual objects such as stars or planets. Instead, it creates a 3D map of the entire galaxy, looking for changes in position and motion in the one billion stars of the Milky Way. However, the scientists were able to use the observatory’s finder scope to capture this image.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more
What it takes to build a next-generation observatory
CSIRO's ASKAP antennas at the Murchison Radio-astronomy Observatory in Western Australia, 2010.

When you hear about big science projects like a huge new telescope or a miles-long particle accelerator, it’s usually in the context of the big science discoveries they’ve made. But before anyone can make a big science breakthrough, someone needs to design and build these massive facilities. And that can mean corralling international collaborations, running power lines, and facing extreme weather conditions just to get the concrete poured.

From rats chewing at fiber optic lines to inflatable tents to keep out the 100-degree heat, science can be messy when it meets the real world. We spoke to representatives from three current and upcoming big science projects to learn what it takes to turn a barren patch of rock and dirt into a world-class observatory.
Detecting something new
Many big facilities are incremental improvements on existing projects, but sometimes science takes a step forward in an entirely new direction. That’s what happened when it came to detecting gravitational waves for the first time, which the LIGO (Laser Interferometer Gravitational-Wave Observatory) facility achieved in 2015, and for which the researchers were awarded the Nobel Prize in physics.

Read more