Skip to main content

FSR 2.0 is the complete reboot AMD’s upscaling needed

AMD announced the next version of FidelityFX Super Resolution (FSR) not too long ago and the company shed more light on how it works on a technical level at GDC 2022.

FSR 1.0 wasn’t perfect, and the new version looks to improve image quality while sticking to the values that made FSR stand out in the first place. Here’s what we learned about FSR 2.0 at GDC 2022, and how it might impact your PC games in the future.

FSR 2.0 quality modes and support

A comparison of FSR 2.0 in Deathloop.
Image used with permission by copyright holder

Before getting into the technical details, AMD revealed a few key aspects of FSR 2.0: Its various quality modes and the hardware it will work on. Like FSR 1.0, the new version works across graphics cards, regardless of if they’re from AMD or Nvidia. And FSR 2.0 is open source, so any developer can access it on AMD’s GPUOpen platform.

As for the quality modes, here’s how they shake out:

Scaling factor Input resolution Output resolution
Quality 67% of screen resolution, 1.5x scaling 1280 x 720

2560 x 1440

1920 x 1080

3840 x 2160

Balanced 59% of screen resolution, 1.7x scaling 1129 x 635

2259 x 1270

1920 x 1080

3840 x 2160

Performance 50% of screen resolution, 2x scaling 960 x 540

1920 x 1080

1920 x 1080

3840 x 2160

The Ultra Quality mode from FSR 1.0 is gone, and instead, AMD is going with three simple quality modes. There’s an optional Ultra Performance mode for developers, though it won’t be available in every FSR 2.0 release.

For hardware support, AMD has a list of optimized recommendations. For AMD, the lowest option is the RX 590 and for Nvidia, the lowest option is a GTX 1070. You can use FSR 2.0 on less powerful hardware, but AMD says it may not provide an optimal experience.

Console fans have something to get excited about, though: Xbox support. FSR 1.0 supported Xbox, but we didn’t hear much about the tech on Microsoft’s console. Registered Xbox developers can now access FSR 2.0 from AMD free of charge, so hopefully, we’ll see it more in console games.

How FSR 2.0 works

A graph of how FSR 2.0 works.
Image used with permission by copyright holder

The most important thing you need to know about FSR 2.0 is that it’s not an update to FSR 1.0. It’s something completely new. According to AMD, it was important to build FSR 2.0 from the ground-up due to a big limitation with FSR 1.0: Anti-aliasing.

FSR 1.0 requires high-quality anti-aliasing from the source image. The problem is that a lot of games don’t have high-quality anti-aliasing, leading to much lower image quality in certain titles. That’s likely why FSR looks so much worse in a game like Deathloop than it does in Godfall. 

FSR 2.0 doesn’t require anti-aliasing. It takes three inputs from the full resolution: Color, depth, and motion. These inputs can have aliasing, and that’s fine. FSR 2.0 will produce a final frame based on these inputs with anti-aliasing, which should hopefully add more consistency to games that support FSR and increase image quality.

Motion and depth inputs should increase image quality, as well. These are two key factors when it comes to the excellent image quality from Nvidia’s Deep Learning Super Sampling (DLSS).

FSR 2.0 works similarly to DLSS but with one major difference: It doesn’t use machine learning. It appears, based on what we know right now, that FSR 2.0 is like DLSS on a technical level, just with the dedicated hardware and machine learning bits ripped out.

Upscaling comparison on God of War PC.
DLSS vs. FSR in God of War. DLSS is on the right and FSR is on the left. Image used with permission by copyright holder

Instead, FSR 2.0 continues to use the Lanczos algorithm, which it used on FSR 1.0. DLSS has excellent image quality, but it’s not clear if that’s due to the machine learning aspect or Nvidia’s approach to upscaling. If the approach makes the difference, FSR 2.0 could finally go toe-to-toe with Nvidia’s flagship feature.

Dealing with artifacts

Like DLSS, FSR 2.0 uses temporal (time-based) information. The problem is that temporal data can cause a wide range of visual artifacts. AMD is addressing those artifacts with FSR 2.0.

An example of ghosting with Nvidia DLSS.
Nvidia DLSS has ghosting issues, too. Nvidia

First, ghosting. Because FSR 2.0 uses previous frames, there’s a chance that an object will smear on screen, as the upscaling gets confused about where the object is. This is a problem with DLSS, as well. FSR 2.0 uses the depth from the current and previous frames to create a disocclusion mask — essentially an overlay that shows what’s moving from one frame to another.

Then FSR corrects the problem by using a threshold. If the movement is outside the threshold, FSR 2.0 automatically kicks in and corrects the ghosting.

Another major issue with FSR 1.0 was shimmering. This happens as the upscaler tries to gather new data on thin objects — you can see pixels jump back and forth. AMD is solving this issue by locking some parts of a scene. If you stare at a field of grass, for example, the pixels of grass may be locked to avoid this shimmering.

In due time

AMD FidelityFX Super Resolution 2.0 First Look in DEATHLOOP

FSR 2.0 won’t be here until around the summer, so we won’t know how it holds up until it’s here. The insights AMD offered at GDC are promising, though. FSR 2.0 looks to be a much more ambitious release, one that can go toe-to-toe with Nvidia on image quality while maintaining the open-source nature of the original version.

Editors' Recommendations

Jacob Roach
Senior Staff Writer, Computing
Jacob Roach is a writer covering computing and gaming at Digital Trends. After realizing Crysis wouldn't run on a laptop, he…
AMD is surprise-launching FSR 2.0 this week
Colt using a Slab and about to kill an enemy.

While the highlight of today was certainly AMD's RX 6000 refresh, the company has also announced its plans to launch FidelityFX Super Resolution 2.0 (or FSR 2.0) on May 12. The newest version of AMD's upscaler will debut on Deathloop, a critically acclaimed first-person shooter which released last year. With FSR 2.0, AMD is hoping to catch up to Nvidia's Deep Learning Super Sampling (or DLSS) upscaling solution.

AMD had made it clear for some time that Deathloop was going to be one of the first games to feature FSR 2.0, but we expected it would come this summer. In fact, the news about FSR 2.0 was buried in a PR article that mostly focused on the new RX 6000 series refresh. AMD also announced all the other games that will receive FSR 2.0 support "in the coming months," which means Deathloop will likely be the only FSR 2.0-capable game for some time.

Read more
Is Nvidia DLSS about to become obsolete? Here’s the proof
Nvidia DLSS showcase.

Nvidia Deep Learning Super Sampling (DLSS) has been the upscaling tech for over two years, but a new challenger is approaching. Ghostwire Tokyo showcases a relatively new technique in Unreal Engine 5 called Temporal Super Resolution (TSR) that looks and performs nearly as well as DLSS does, and it has a big advantage: It works with any graphics card.

DLSS has enjoyed the limelight as a proprietary supersampling technique that delivers much better image quality than competitors like AMD FidelityFX Super Resolution (FSR). Companies like AMD haven't been idle, though, and general-purpose upscaling solutions like FSR 2.0 and TSR will make DLSS obsolete.

Read more
AMD FSR 2.0 takes notes from DLSS — and it’s coming soon
A comparison of AMD FSR in Deathloop.

AMD has lifted the curtain on the new version of FidelityFX Super Resolution (FSR), and this time around, it's looking to be a more direct competitor to Nvidia's DLSS. The aptly named FSR 2.0 promises higher image quality compared to the first version, and according to AMD, it can hold its own against native resolution.

AMD fans have eagerly waited for an upscaling solution to go toe-to-toe with Nvidia's Deep Learning Super Sampling (DLSS). For now, though, all we have are a few screenshots from AMD. You can see FSR 2.0 at work in Deathloop below.

Read more