Awful home Wi-Fi? Don’t get a new router before trying this

Moving your router to improve signal
My home has always had a pair of Wi-Fi dead zones that drive me nuts — the basement, and the living room on the first floor. I usually manage a solid 40-80Mbps in all other locations, which is ample for my needs. But in those two trouble spots the signal can drop to a pathetic 130Kbps (yup, slightly faster than the average modem circa 1998) or disappear entirely. That’s a problem when you’re trying to stream Netflix, or do anything. I’ve struggled with this for months, but then our review of Google’s OnHub router gave me an idea. “OnHub is designed to be out in the open, where Wi-Fi works best,” said Google’s marketing copy. At first, I was skeptical. Place a router more centrally? How do you do that when it needs to be connected to your DSL or cable modem and to a power supply? Still, it made me wonder. Can you boost Wi-Fi speeds by simply moving your router around a bit?

At 2,800 square feet, my house isn’t the largest. But it’s narrow (18 feet at its widest point) and includes thick wood beams backed by solid brick walls. Over the years, I tried 9 different routers from companies like Linksys, Buffalo, Apple and Netgear, as well as multiple range extenders from brands like Belkin and TP-Link. Nothing seemed to get those problem areas reliably connected, but one thing has remained the same. The router has always been in the same place, atop a metal filing cabinet in our home office.

Long story short? I was able to dramatically improve Wi-Fi performance just by moving my router! Specifically, I elevated it with a simple cardboard box and readjusted my antennas to make a big difference. Here’s what I was working with, what I did, and how it can help your router situation, too.

The Router

Moving the router: linksys-wrt1900ac

The first step was to make sure that the router itself was not part of the problem. The folks at Linksys kindly offered to loan me one of their latest models for my test, the fabulously retro-styled, and third-party firmware-friendly, WRT 1900 ACS ($220). It’s a dual-band, a/b/g/n/ac router with four external antennas and a dual-core 1.6Ghz processor.

The Test Tool

Moving the router: Test App

To figure out what the various changes in position did to my Wi-Fi performance, I used software called iPerf. With iPerf, you set a machine on your network (preferably a computer that’s wired into the router’s ethernet port, like my iMac) as the host, then run an iPerf-compatible app on your wireless device as the client (I used the free HE.NET for iOS running on an iPhone 6). The client pings the host machine with your choice of protocol (TCP or UDP), and package size (in this case, a single megabyte of data), and the host records and relays the result of that ping back to the client. You’ll see the amount of data sent, the speed it was able to achieve, and how long it took to send.

The Configurations

Baseline: Before installing the new WRT 1900 ACS, I took measurements using my existing router, the Linksys WRT 1200 AC, a two-antenna dual-band router.

1) Original Placement, Antenna Position 1: WRT 1900 ACS sitting directly atop of a 2-foot-3-inch metal filing cabinet, about one inch from a drywall wall, which is the same location used for the Baseline. The rear antennas were at a 45-degree outward angle, the side antennas pointing straight up.

2) Partially Elevated, Antenna Position 1: Identical to (1), but router placed on top of its cardboard package, four-and-a-half inches elevated from the surface of the filing cabinet

3) Fully Elevated, Antenna Position 1: Identical to (1) but with the router placed on top of its cardboard box positioned vertically for a distance of 12.5 inches from the surface of the filing cabinet.

4) Fully Elevated, Antenna Position 2: Identical to (3) but with side antennas set to a matching 45 degree outward angle as the rear antennas.

5) Fully Elevated, Antenna Position 3: Identical to (3) but with side antennas set to a 90 degree outward angle (parallel to the floor).

6) Original Placement, Antenna Position 3: Removed the cardboard box from config (5), but kept everything else the same.

The Test Zones

Moving the router: WiFi diagram
  1. Third Floor Bedroom
  2. Second Floor Bedroom
  3. Second Floor Office (where router sits)
  4. First Floor Living Room (front of house)
  5. First Floor Kitchen (rear of house)
  6. Basement

The Results

Configuration/ Zone Zone A Zone B Zone C Zone D Zone E Zone F
Baseline 28.3 Mbit/s 23.6 Mbit/s 86.9 Mbit/s 194 Kbit/s 8.86 Mbit/s 130 Kbit/s
1 57.0 Mbit/s 81.8 Mbit/s 101 Mbit/s 194 Kbit/s 10.7 Mbit/s 77.2 Kbit/s
2 n/a n/a n/a 290 Kbit/s n/a 199 Kbit/s
3 n/a n/a n/a 457 Kbit/s n/a 126 Kbit/s
4 n/a n/a n/a 1.34 Mbit/s n/a 156 Kbit/s
5 55.3 Mbit/s 84.1 Mbit/s 103 Mbit/s 20.0 Mbit/s 69.9 Mbit/s 10.1 Mbit/s
6 n/a n/a n/a 266 Kbit/s n/a 106 Kbit/s

The chart requires a bit of explanation. For the baseline test with the original router, I took measurements in all six locations of the house. I then swapped out the WRT 1200 AC for the WRT 1900 ACS, mostly so I could see what (if any) effect using a newer router with 2 additional antennas would have to my overall connectivity. As you can see, speeds in my “good” zones improved considerably, with Zone B seeing the biggest jump in performance. My problem zones (D, F) didn’t improve at all. In fact, Zone F got worse (though I’m not sure how that’s even possible).

Moving the router slightly from the metal surface (Config #2) of the filing cabinet certainly helped, but I was still stuck well under 1 Mbit/s. Elevating the router further (Config #3) produced a similar increase in Zone D, but actually diminished the speed in Zone F. Angling out the side antennas to match the rear antennas’ 45 degree slant (Config #4) finally bumped Zone D above 1Mbit/s, but the basement continued to stagnate.

Then I angled the side antennas down to a 90-degree position (Config #5), and, BINGO! Speeds improved in Zone D by 2,000 percent, and in Zone F by a staggering 64,000 percent, over the previous configuration. Finally, speeds I can live with. But was this massive speed bump simply a matter of angling two antennas?

The last configuration (#6) where I keep the antennas the same but eliminate the cardboard box, tells the tale. No amount of antenna angling can overcome the signal impediment that the metal filing cabinet throws into the mix.

What’s Going On?

Moving the router: Linksys WRT3200 ACM router review
Bill Roberson/Digital Trends
Bill Roberson/Digital Trends

To find out why the combination of router height and antenna angles from Config #5 proved so successful, I reached out to Linksys Product Manager, Mathieu Whelan.

“Most external antennas are dipole,” Whelan said. “If you imagine the radiation pattern in 3D space it will look kinda like a fat donut. From the top-down it will look like a perfect circle. When you angle the antenna at 45 degrees, you have to picture that donut tilting at 45 degrees as well.” Moving the donuts around has a direct impact on your coverage area. “If you angle the antenna parallel to the ground, that donut is now sitting vertically instead of horizontally,” Whelan pointed out.

Sure enough, when you look at a diagram of our house — seen head-on so you can visualize these donuts — the starting antenna angles from Configuration #1 (45 degrees on the rear and straight up on the sides) creates a series of donuts that never come in direct contact with my two trouble spots.

Moving the router: wifi-donut-pattern-1

Which explains why, when you simply rotate the side antennas down to a 90 degree angle, the donut pattern changes too, resulting in way better overall coverage.

Moving the router: wifi-donut-pattern-5

Both the front room (Zone D) and the basement (Zone F) are now within the signal path created by the side antennas. However, this represents an optimal arrangement, without any impediments to the signals as they disperse around the house.

Re-introduce an obstacle (like a metal filing cabinet) and you might as well not have those side antennas at all!

Moving the router: wifi-donut-pattern-6

This diagram makes it look like the signals can’t get to the bottom of the house, but in reality it’s more subtle. “Generally, metal [like the filing cabinet] is pretty bad. Metal acts like a reflector [to radio waves] in much the same way that metal reflects light,” Whelan told me. “Light hits the metal of the filing cabinet and then bounces backward. With RF [radio frequencies] some of it will get through, but most of it will bounce back.” That’s why my trouble area had a signal — but only a weak one.

Conclusion

In a perfect world, our best Wi-Fi routers would occupy roughly the same location in our homes as the dining room chandelier — up high, away from any obstacles and roughly centered in the space of the home.

But since that arrangement isn’t likely to look very good (or even be practical from a wiring point of view) your best bet for maximum Wi-Fi coverage is to follow these guidelines as closely as possible.

  1. Higher is better. Moving the router off the floor or even off the table can help. get as close to the middle of the room’s vertical space as possible.
  2. Avoid surfaces that reflect RF. Metal is the major culprit here, but not all metal can be seen. If your home was built or renovated recently, there may be metal studs or panels in the walls.
  3. Play the angles. Remember the donut analogy–try to orient your router and angle your antennas so that the resulting donut patterns hit all of the areas of the house where you need coverage. If your router does not have moveable external antennas, you can still affect the donut pattern by changing the orientation of the router itself.

Updated: Edited to be more concise. 

Home Theater

Reasons not to mount a TV over your fireplace (and other helpful tips)

Mounting a TV above your fireplace may be popular and it might even seem appealing, but we have some concerns. We've got a list of reasons why placing your digital picture machine over a fire should be avoided, if at all possible.
Gaming

Having problems with your Xbox One console? We have the solutions

The Xbox One has evolved over the years, but so have its problems. Thankfully, we have solutions for some of the console's most enduring problems, whether you're experiencing issues with connectivity or your discs.
Gaming

Xbox's app lets you access your console while away from home. Here's how

Microsoft's Xbox allows you to access your profile information and launch media content directly from your mobile device. Check out our quick guide on how to connect your smartphone to an Xbox One.
Gaming

Your PlayStation 4 game library isn't complete without these games

Looking for the best PS4 games out there? Out of the massive crop of titles available, we selected the best you should buy. No matter what your genre of choice may be, there's something here for you.
Web

Rid yourself of website notification requests in just a few easy steps

Wish you knew how to block browser and website notifications? You can do it on a case by case basis, but that can become dull after the 10th site has asked for your approval. Here's how to block them outright.
Computing

Don't take your provider's word for it. Here's how to test your internet speed

If you're worried that you aren't getting the most from your internet package, speed tests are a great way to find out what your real connection is capable of. Here are the best internet speed tests available today.
Computing

Decades-old Apple IIe computer found in dad’s attic, and it still works

A New York law professor went viral last weekend after he discovered an old Apple IIe computer sitting in his dad's attic. In a series of tweets, he showed that the vintage machine still works perfectly fine after 30 years.
Computing

Logitech’s G MX518 gaming mouse pairs classic looks with all-new tech

Logitech is relaunching one of its most popular classic gaming mice, the MX518. Now called the G MX518, it sports upgraded internals that give it a 16,000 DPI optical sensor and new and improved memory.
Computing

Microsoft could be planning a laptop with foldable screen, hints patent filing

Filed in late 2017 and titled "Bendable device with Display in Movable Connection With Body," the patent filing explains a new mechanism for laptops which can eliminate a hinge and allow the screen to fold shut from the inside,
Deals

From Chromebooks to MacBooks, here are the best laptop deals for February 2019

Whether you need a new laptop for school or work or you're just doing some post-holiday shopping, we've got you covered: These are the best laptop deals going right now, from discounted MacBooks to on-the-go gaming PCs.
Computing

Is AMD's Navi back on track for 2019? Here's everything you need to know

AMD's Navi graphics cards could be available as soon as July 2019 — as long as it's not delayed by stock problems. Billed as a successor to Polaris, Navi promises to deliver better performance to consoles, like Sony's PlayStation 5.
Deals

Here are the best Chromebook deals available in February 2019

Whether you want a compact laptop to enjoy some entertainment on the go, or you need a no-nonsense machine for school or work, we've smoked out the best cheap Chromebook deals -- from full-sized laptops to 2-in-1 convertibles -- that won't…
Computing

RTX might be expensive, but the 16 series could have the best Nvidia Turing GPUs

Set to debut at a step below the RTX 2060 on the price and performance spectrums, the GTX 1660 Ti and its other 16-series brethren could be Nvidia's killer mid-range cards of 2019 — especially with Tensor Core-powered DLSS.
Computing

Ryzen 3000 chips will be powerful, and they might be launched as early as July

AMD's upcoming Ryzen 3000 generation of CPUs could be the most powerful processors we've ever seen, with higher core counts, greater clock speeds, and competitive pricing. Here's what we know so far, based on both leaks and the recent…