Skip to main content

Scientists gave gerbils a futuristic ear implant that lets them hear light

Image used with permission by copyright holder

You may have heard of the condition synesthesia, which describes the cross-wiring of the brain’s senses that can lead to people hearing colors, seeing sounds, and assorted other unusual phenomena. Researchers at Germany’s University Medical Center Göttingen have demonstrated a useful variation on this idea: A technique that involves using flashes of light to restore hearing. As researcher Dr. Marcus Jeschke told Digital Trends, it allows subjects — in this case, gerbils — to “actually hear light.”

Their demonstration involved injecting the ears’ cochlea with a virus that genetically codes the cells to be sensitive to light. The researchers then implanted optical fibers to deliver light to the neurons. It proved effective, and the researchers were able to show that the animals experienced light from these optical fibers as sound. Going forward, they hope that this technique could be used to make superior cochlear implants for humans.

“Hearing loss is a big problem for many people,” Jeschke said. “It’s also a problem that pretty much all of us will face during our lifetime. As you get older, you hear less and less well. You may end up hearing so poorly that you need a hearing aid or an implanted hearing system. What we’ve been doing is trying to come up with a way to make cochlear implants work better, and we’ve done that by using light to stimulate the auditory nerve neurons, thereby providing patients with a much finer frequency resolution. That means more sound information channels.”

This higher-resolution sound is important for future cochlear implants since current models can often make hearing sounds in certain contexts difficult — for instance, conversation in a crowded room. Right now, the research is still in its embryonic stages, and Jeschke noted that there is much more to be done before this can be applied to humans in the form of clinical trials.

“There are two main next steps for us,” he said. “The first is to understand much better how the auditory system is activated by this light stimulation in the cochlea. We need to know how, if at all, it differs from normal auditory stimulation. The second is to transfer this beyond rodent models. There’s a big step in going from a rodent to a human model. We need to find a step in between, where we look at a nervous system and an immune system that is much closer to that of a human.”

A paper describing the work was recently published in the journal Science Translational Medicine.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
The 11 best Father’s Day deals that you can get for Sunday
Data from a workout showing on the screen of the Apple Watch Series 8.

Father's Day is fast approaching and there's still time to buy your beloved Dad a sweet new device to show him how much you love him. That's why we've rounded up the ten best Father's Day tech deals going on right now. There's something for most budgets here, including if you're able to spend a lot on your loved one. Read on while we take you through the highlights and remember to order fast so you don't miss out on the big day.
Samsung Galaxy Tab A8 -- $200, was $230

While it's the Plus version of the Samsung Galaxy Tab A8 that features in our look at the best tablets, the standard variety is still worth checking out. Saving your Dad the need to dig out their laptop or squint at a small phone screen, the Samsung Galaxy Tab A8 offers a large 10.5-inch LCD display and all the useful features you would expect. 128GB of storage means plenty of room for all your Dad's favorite apps as well as games too. A long-lasting battery and fast charging save him the need for a power source too often too.

Read more
The Apollo wearable is proven to help you sleep better (and it’s on sale)
Apollo wearable worn during sleep in bed.

This content was produced in partnership with Apollo Neuro.
Stress, anxiety, and insomnia are all concerning things that just about everyone struggles with at one time or another. Maybe you can sleep, fending off insomnia, but you lack quality sleep and don’t feel rested in the morning. Or, maybe when it’s time to kick back and relax, you just can’t find a way to do so. There are many solutions for these issues, some work, and others don’t, but one unlikely area of support can be found in a modern, smart wearable.

Medicine is the obvious choice, but not everyone prefers to go that route. There is an answer in modern technology or rather a modern wearable device. One such device is the Apollo wearable, which improves sleep and stress relief via touch therapy. According to Apollo Neuro, the company behind the device, which is worn on your ankle, wrist or clipped to your clothing, it sends out waves of vibrations to help your body relax and reduce feelings of stress. It's an interesting new approach to a common problem that has typically been resolved via medicine, therapy, or other more invasive and time-consuming techniques. The way it utilizes those vibrations, uniquely placed and administered, to create a sense of peace, makes us ask, can it really cure what ails us? We’ll dig a little deeper into how it achieves what it does and what methods it’s using to make you feel better.

Read more
What comes after Webb? NASA’s next-generation planet-hunting telescope
An illustration shows how NASA's Habitable Worlds Observatory would measure the atmosphere of distant planets.

When it comes to building enormous, complex space telescopes, agencies like NASA have to plan far in advance. Even though the James Webb Space Telescope only launched recently, astronomers are already busy thinking about what will come after Webb — and they've got ambitious plans.

The big plan for the next decades of astronomy research is to find habitable planets, and maybe even to search for signs of life beyond Earth. That's the lofty goal of the Habitable Worlds Observatory, a space telescope currently in the planning phase that is aimed at discovering 25 Earth-like planets around sun-like stars.

Read more