Skip to main content

MIT’s snake robot is designed to crawl through blood vessels in the brain

Robo-thread

What’s creepier than a snake robot? Answer: A snake robot that’s designed to crawl through the blood vessels in your brain. That’s exactly what researchers at Massachusetts Institute of Technology (MIT) have developed. But, don’t worry, it’s here to help.

Recommended Videos

The steerable, magnetically controlled threadlike robot is intended to glide through the complex vasculature of the human brain. The goal is to create a new tool that could be used by doctors to deliver clot-reducing therapies to patients who have suffered from aneurysms or strokes. Currently, this is done using a catheter which is manually threaded by a surgeon, with the help of a guidewire. Finding a way to do this more efficiently could help save lives, while also reducing the physical strain on surgeons, along with reducing their exposure to X-ray imaging tool fluoroscopy.

“Stroke is the number five cause of death and a leading cause of disability in the United States,” Xuanhe Zhao, an associate professor of mechanical engineering at MIT, said in a statement. “If acute stroke can be treated within the first 90 minutes or so, patients’ survival rates could increase significantly. If we could design a device to reverse blood vessel blockage within this ‘golden hour,’ we could potentially avoid permanent brain damage. That’s our hope.”

The research combines previous MIT work involving soft water-based hydrogen and 3D-printed materials controlled by magnetism. The soft snake-like robot has, at its center, a nickel-titanium alloy which is both bendy and springy. The wire is coated with a rubbery paste, embedded with particles to give it its magnetic properties.

The team has demonstrated how the robotic thread can be controlled using a large magnet to steer it through an obstacle course of tiny rings. This is described as being similar to guiding a thread through the eye of a needle. They have also tested in on a life-size silicone replica of the brain’s major blood vessels. This recreation of an actual brain was modeled on CT scans of an actual patient’s brain. To simulate the presence of blood, it was filled with a liquid of similar viscosity.

The project was funded in part by the Office of Naval Research, the MIT Institute for Soldier Nanotechnologies, and the National Science Foundation (NSF).

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Self-driving vehicle rules set to loosen under Trump, report says
self driving looser rules trump screenshot 2024 10 at 54 56 pm 6708947b14810

Tesla “has been very clear the future is autonomous,” CEO Elon Musk said in October, shortly after unveiling the Cybercab, Tesla’s self-driving robotaxi.

It now seems that Musk, who was recently nominated to lead a newly-created "Department of Government Efficiency," is sharing his crystal ball with the incoming Trump administration.

Read more
Honda doubles down on ‘holy grail’ of EV batteries
honda solid state battery production first electric suv 3

While some automakers are scaling back their production of electric vehicles, Honda is basking in the glow of a successful launch of its Prologue EV in the U.S., and was recently dubbed “North America’s most committed automaker.”

And now, Japan’s third-largest automaker is showing a similar commitment to making EVs more efficient and affordable, zeroing in on the production of its own in-house solid-state batteries, also known as the ‘holy grail’ of EV batteries.

Read more
Hyundai’s brand new Ioniq 9 EV features backseat lounge
hyundai ioniq 9 lounge 4 single image desktop

After months of teasing details about the Ioniq 9, Hyundai’s much-anticipated, three-row electric SUV, the company finally unveiled it at the Los Angeles Auto Show.

One of the Ioniq 9’s promised features -- that the SUV had the ability to offer a lounge-like interior – had most of us wondering what exactly that might mean.

Read more