Skip to main content

Part Terminator, part Tremors: This robotic worm can swim through sand

UCSB Hawkes Lab

“That’s how they git you. They’re under the goddamned ground!” So says Val McKee, the hired hand played by Kevin Bacon in 1990’s classic comedy creature feature, Tremors. McKee is referring to the Graboids, an invertebrate species of monstrous giant worms which travel underground, pushing aside dirt while they dig.

The folks at the University of California, Santa Barbara, and the Georgia Institute of Technology have been working on a robot that’s not a million miles from the Graboids. While it’s currently a lot smaller, and far less prone to munching on unsuspecting cattle and humans, it’s nonetheless a tunneling, snake-inspired creation that’s able to burrow through soil or soft sand. And maybe, its creators claim, even one day the surface regolith found on other planets. Is this the future of space rovers yet to come?

“We have developed a type of burrowing robot that takes a new approach to burrowing, by trying to reduce resistive forces rather than combating them,” Nicholas Naclerio, a graduate mechanical engineering student researcher at UC Santa Barbara, told Digital Trends. “The three principles [that] enable it are tip extension to eliminate drag along its sides, air fluidization to reduce the resistive force of granular media, and asymmetry to control lift forces produced in horizontal burrowing.”

Robotic burrowing with tip extension and granular fluidization

Sandwormvines go digging

The robot itself is surprisingly low-tech. Its body is made of an airtight, ripstop nylon fabric. A nylon tube supplies air to its tip, which blasts aside the particulate in front of it to clear a path as it wends its underground way. A carbon fiber braid adds torsional stiffness, while a Teflon sheath reduces friction. The robot’s movement is pneumatically driven by compressed air or nitrogen, allowing it to move under the surface.

UCSB Hawkes Lab

Naclerio said he was unfamiliar with the Tremors Graboids (although the Sandworms of Dune are another story.) In fact, while the robot was definitely nature-inspired, it seemingly wasn’t based on worms or snakes at all.

“Our robot is directly inspired by plant roots, which grow from their tips to extend deep into the soil,” Naclerio said. “By extending from its tip, the robot avoids friction along its sides, and can turn in any direction. We also took inspiration from the southern sand octopus which expels a jet of water to help burrow into the seafloor. Our robot blows air from its tip to fluidize the sand near its tip, reducing the force it needs to burrow into the ground. Lastly, we used an asymmetric airflow direction and angled wedge at the tip of the robot to help control lift forces. This was inspired by the sand fish lizard, which uses its wedge-shaped head to help it burrow into sand.”

UCSB Hawkes Lab

This unique design helped the team to overcome the “challenge of lift” in horizontal burrowing. “When we first tried to burrow horizontally, our robot always surfaced,” he said. “It turns out that a symmetric object moving horizontally through a granular media experiences lift, because it’s easier to push material up and out of the way than it is to compact it down. We addressed this by blowing air straight down, to reduce the strength gradient that causes lift, and by adding [the] wedge to the tip of the robot.”

Burrowing snake robots on the moon

So what applications could this burrowing snake/vine robot have, then? And, more importantly, could it be scaled up to displace large quantities of sand or earth? “We believe that the principles presented in this paper could be used to expand the capabilities of conventional burrowing methods, particularly in horizontal and steerable burrowing,” said Naclerio.

As far as use-cases go, the more pedestrian terrestrial ones might include assorted ditch-digging activities. “One of the earliest visions we had for this project, is that the robot would burrow down, under, and up on the other side of a driveway to install an irrigation or communication line without the need to dig a trench,” Naclerio said. “Other applications include search and rescue, geothermal loop installation, granary inspection, and more.”

It’s that “more,” perched non intrusively on the end of granary inspection, that makes for the most compelling (and science fiction) use-case of them all. “We think that the robot is particularly well suited for dry, low-gravity, extraterrestrial environments, where reactive forces may be difficult to produce,” continued Naclerio. “Example applications include thermal sensor placement on Mars, volcanic tunnel exploration on the moon, asteroid sampling or anchoring, and granular ice exploration on Enceladus, a moon of Saturn.”

The idea of using this technique to explore low-gravity environments in space might sound farfetched. However, the team is currently collaborating on a project with NASA to cover some of these exact applications. Who knows: Maybe worm robots in space isn’t quite as crazy as it sounds!

A paper describing the work was recently published in the journal Science Robotics.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
This bracelet helps you fall asleep faster and sleep longer
woman-in-bed-wearing-twilight-apollo-on-ankle

This content was produced in partnership with Apollo Neuroscience.
Have you been struggling to get the recommended seven hours of sleep? It's always frustrating when you get in bed at a reasonable time, then toss and turn for a hours before you actually sleep. The quality of that sleep is important too. If you're waking up multiple times during the night, you're likely not getting the quality REM cycle sleep that truly rejuvenates your body. If traditional remedies like herbal teas and noise machines just aren't helping, maybe it's time to try a modern solution. Enter the Apollo wearable.

Now we understand being a little skeptical. How can a bracelet on your wrist or ankle affect your sleep patterns? Certainly the answer to a better night's sleep can't be so simple. We considered these same things when we first heard of it. We'll dive deeper into the science behind the Apollo wearable, but suffice it to say that many people have experienced deeper, uninterrupted sleep while wearing one.
A non-conventional approach to better sleep

Read more
The 11 best Father’s Day deals that you can get for Sunday
Data from a workout showing on the screen of the Apple Watch Series 8.

Father's Day is fast approaching and there's still time to buy your beloved Dad a sweet new device to show him how much you love him. That's why we've rounded up the ten best Father's Day tech deals going on right now. There's something for most budgets here, including if you're able to spend a lot on your loved one. Read on while we take you through the highlights and remember to order fast so you don't miss out on the big day.
Samsung Galaxy Tab A8 -- $200, was $230

While it's the Plus version of the Samsung Galaxy Tab A8 that features in our look at the best tablets, the standard variety is still worth checking out. Saving your Dad the need to dig out their laptop or squint at a small phone screen, the Samsung Galaxy Tab A8 offers a large 10.5-inch LCD display and all the useful features you would expect. 128GB of storage means plenty of room for all your Dad's favorite apps as well as games too. A long-lasting battery and fast charging save him the need for a power source too often too.

Read more
The Apollo wearable is proven to help you sleep better (and it’s on sale)
Apollo wearable worn during sleep in bed.

This content was produced in partnership with Apollo Neuro.
Stress, anxiety, and insomnia are all concerning things that just about everyone struggles with at one time or another. Maybe you can sleep, fending off insomnia, but you lack quality sleep and don’t feel rested in the morning. Or, maybe when it’s time to kick back and relax, you just can’t find a way to do so. There are many solutions for these issues, some work, and others don’t, but one unlikely area of support can be found in a modern, smart wearable.

Medicine is the obvious choice, but not everyone prefers to go that route. There is an answer in modern technology or rather a modern wearable device. One such device is the Apollo wearable, which improves sleep and stress relief via touch therapy. According to Apollo Neuro, the company behind the device, which is worn on your ankle, wrist or clipped to your clothing, it sends out waves of vibrations to help your body relax and reduce feelings of stress. It's an interesting new approach to a common problem that has typically been resolved via medicine, therapy, or other more invasive and time-consuming techniques. The way it utilizes those vibrations, uniquely placed and administered, to create a sense of peace, makes us ask, can it really cure what ails us? We’ll dig a little deeper into how it achieves what it does and what methods it’s using to make you feel better.

Read more