Skip to main content

Stanford researchers create algorithm that makes wind turbines more efficient

John Dabiri/Stanford

Could an algorithm make wind turbines more productive? It sounds crazy, but the answer turns out to be a resounding “yes.” Researchers at Stanford University recently used a proprietary optimization algorithm to model the most efficient yaw angle for turbines. The yaw mechanism in a wind turbine is used to turn the wind turbine rotor against the wind. To ensure that a turbine produces the maximal amount of electric energy, a yaw drive keeps the rotor facing into the wind as the wind direction changes.

The algorithm developed by the team took into account a half decade of information on wind speed, wind direction, and power generation from six turbines. This data was then combined with a wind model. It suggested that the most efficient way to gather maximal energy from a series of wind turbines would be for the yawing of several of the turbines to be positioned 20 degrees off the wind. This was then tested out on a real Alberta, Canada, wind farm. It illustrated how, by working together, wind turbines can generate more energy by effectively “sharing” the wind.

Recommended Videos

“We’ve demonstrated that the power output of wind farms can be improved by turning some of the turbines so that they’re facing slightly away from the wind,” John Dabiri, a Stanford fluid mechanics expert who worked on the project, told Digital Trends. “This causes the choppy air created by upwind turbines to be deflected away from the downstream turbines. The upwind turbines lose a little power, but the farm as a whole can produce significantly more power.”

Please enable Javascript to view this content

The ultimate goal of the “wake steering method” project was to increase the efficiency of wind farm power generation, so that wind energy could play a more vital role in helping wean us off our current reliance on fossil fuels.

“This first project focused on six wind turbines, to demonstrate that the idea works while limiting the risks associated with a new technology,” Dabiri continued. “The next stage will involve tests on larger groups of turbines, including entire wind farms.”

A paper describing the work, titled “Wind farm power optimization through wake steering,” was recently published in the journal Proceedings of the National Academy of Sciences.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Kia America COO says ending EV tax credit would be dumb
kia coo ending ev incentive dumb zeta evs

With Kia just getting started with the expansion of its U.S.-made electric-vehicle (EV) lineup, the automaker may have a good perspective on what losing tax incentives on EVs could mean for the industry and the economy.

The transition team of the incoming Trump administration is reportedly planning to end the federal $7,500 tax credit on the purchase or lease of an EV. Under the Biden administration’s Inflation Reduction Act (IRA), an EV made in North America is eligible for the incentive.

Read more
Mercedes bets solar paint is part of EV-charging future
mercedes solar paint evs benz electric camper

It’s been said that Albert Einstein’s genius came from his ability to freely wonder and ask child-like questions way before he even tried applying science-based solutions.
It seems some within the R&D department at Mercedes-Benz might be similarly inspired. The German automaker is currently developing a special solar paint that, when applied on the surface of vehicles, can harness enough energy from the sun to power up EVs.
The energy generated by the paint’s solar cells can be used for driving or fed directly into a high-voltage battery.
“The photovoltaic system is permanently active and also generates energy when the vehicle is switched off,” Mercedes says. “In the future, this could be a highly effective solution for increased electric range and fewer charging stops.”
The layer of paste to be applied on EVs is significantly thinner than a human hair, yet its photovoltaic cells are packed full of energy. Covering the surface of a mid-size SUV with the paint could produce enough energy for up to 7,456 miles per year under ideal conditions, Mercedes says.
This does imply being in geographic locations with plenty of sun hours during the day.
But even with less-than-ideal sun hours, the energy yielded can make a significant difference to EV charging. Mercedes says the solar-paint charge could provide 100% of needed energy for an average daily drive of 32 miles in sun-drenched Los Angeles. In much less sunny conditions -- such as around Mercedes’ headquarters in Stuttgart, Germany -- it would still yield enough energy for 62% of the distance.
An added bonus for environmentally-conscious drivers: Unlike some solar panels, the solar paint contains no rare earth or silicon – only non-toxic, readily available raw materials. It’s also easy to recycle and considerably cheaper to produce than conventional solar modules, Mercedes says.
The likes of Aptera, Sono Motors, Lightyear, and Hyundai have also been researching how to best harness solar energy to power up EVs.
But that’s been mostly through solar panels yielding enough energy for small and light vehicles, such as Aptera’s three-wheel solar EV. Solar paint could bring solar charging for bigger vehicles, such as electric SUVs, Mercedes says.

Read more
Volkswagen’s affordable ID.2 EV remains on track
vw id2 volkswagen affordable ev 1

It’s no secret that Volkswagen has been facing a huge slump in sales in Europe and China, forcing it to close plants in Germany.

But unlike other European automakers who have stuck to producing high-end electric vehicles (EVs), the German automaker keeps on reaffirming its commitment to bringing affordable EVs to market, including in the U.S.

Read more