Skip to main content

Uranus is losing its atmosphere because of its weird wobbly magnetic field

Voyager 2 may have long ago left our solar system and headed out into interstellar space to explore the unknown, but scientists are still learning from the data it collected as it passed by the other planets in our system. A new analysis of 30-year-old data has revealed a surprising finding about the planet Uranus — the huge magnetic bubble surrounding it is siphoning its atmosphere off into space.

Atmospheres being lost into space can have a profound effect on the development of a planet. As an example, Mars is thought to have started out as an ocean-covered planet similar to Earth but lost its atmosphere over time. “Mars used to be a wet planet with a thick atmosphere,” Gina DiBraccio, space physicist at NASA’s Goddard Space Flight Center and project scientist for the Mars Atmosphere and Volatile Evolution, or MAVEN mission, said in a statement. “It evolved over time to become the dry planet we see today.”

Uranus’s atmospheric loss is driven by its strange magnetic field, the axis of which points at an angle compared to the axis on which the planet spins. That means its magnetosphere wobbles as it moves, which makes it very difficult to model. “The structure, the way that it moves,” DiBraccio said, “Uranus is really on its own.”

Voyager 2 took this image as it approached the planet Uranus on Jan. 14, 1986. The planet's hazy bluish color is due to the methane in its atmosphere, which absorbs red wavelengths of light.
Voyager 2 took this image as it approached the planet Uranus on Jan. 14, 1986. The planet’s hazy bluish color is due to the methane in its atmosphere, which absorbs red wavelengths of light. NASA/JPL-Caltech

Due to the wobbling of the magnetosphere, bits of the atmosphere are drained away in what are called plasmoids — bubbles of plasma which pinch off from the magnetic field as it is blown around by the Sun. Although these plasmoids have been seen on Earth and on some other planets, they had never been observed on Uranus before the recent analysis of old Voyager 2 data.

“Imagine if one spacecraft just flew through this room and tried to characterize the entire Earth,” DiBraccio said. “Obviously it’s not going to show you anything about what the Sahara or Antarctica is like.”

“It’s why I love planetary science,” DiBraccio said. “You’re always going somewhere you don’t really know.”

The research is published in the journal Geophysical Research Letters.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA gives green light to mission to send car-sized drone to Saturn moon
An artist's impression of NASA's Dragonfly drone.

NASA’s Mars helicopter mission is now well and truly over, but following in its footsteps is an even more complex flying machine that's heading for Saturn’s largest moon.

The space agency on Tuesday gave the green light to the Dragonfly drone mission to Titan. The announcement means the design of the eight-rotor aircraft can now move toward completion, followed by construction and a testing regime to confirm the operability of the machine and its science instruments.

Read more
Hubble discovers over 1,000 new asteroids thanks to photobombing
This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern.

The Hubble Space Telescope is most famous for taking images of far-off galaxies, but it is also useful for studying objects right here in our own solar system. Recently, researchers have gotten creative and found a way to use Hubble data to detect previously unknown asteroids that are mostly located in the main asteroid belt between Mars and Jupiter.

The researchers discovered an incredible 1,031 new asteroids, many of them small and difficult to detect with several hundred of them less than a kilometer in size. To identify the asteroids, the researchers combed through a total of 37,000 Hubble images taken over a 19-year time period, identifying the tell-tale trail of asteroids zipping past Hubble's camera.

Read more
Biggest stellar black hole to date discovered in our galaxy
Astronomers have found the most massive stellar black hole in our galaxy, thanks to the wobbling motion it induces on a companion star. This artist’s impression shows the orbits of both the star and the black hole, dubbed Gaia BH3, around their common centre of mass. This wobbling was measured over several years with the European Space Agency’s Gaia mission. Additional data from other telescopes, including ESO’s Very Large Telescope in Chile, confirmed that the mass of this black hole is 33 times that of our Sun. The chemical composition of the companion star suggests that the black hole was formed after the collapse of a massive star with very few heavy elements, or metals, as predicted by theory.

Black holes generally come in two sizes: big and really big. As they are so dense, they are measured in terms of mass rather than size, and astronomers call these two groups of stellar mass black holes (as in, equivalent to the mass of the sun) and supermassive black holes. Why there are hardly any intermediate-mass black holes is an ongoing question in astronomy research, and the most massive stellar mass black holes known in our galaxy tend to be up to 20 times the mass of the sun. Recently, though, astronomers have discovered a much larger stellar mass black hole that weighs 33 times the mass of the sun.

Not only is this new discovery the most massive stellar black hole discovered in our galaxy to date but it is also surprisingly close to us. Located just 2,000 light-years away, it is one of the closest known black holes to Earth.

Read more