Skip to main content

This weird exoplanet is regrowing its atmosphere

This image is an artist’s impression of the exoplanet GJ 1132 b. For the first time, scientists using the NASA/ESA Hubble Space Telescope have found evidence of volcanic activity reforming the atmosphere on this rocky planet, which has a similar density, size, and age to that of Earth.
This image is an artist’s impression of the exoplanet GJ 1132 b. For the first time, scientists using the NASA/ESA Hubble Space Telescope have found evidence of volcanic activity reforming the atmosphere on this rocky planet, which has a similar density, size, and age to that of Earth. NASA, ESA, and R. Hurt (IPAC/Caltech)

Scientists know that the atmospheres of planets change over time — Mars, for example, is gradually losing its atmosphere as it evaporates into space. The examples we know of suggested this was a one-way process, where an atmosphere developed and then was subsequently lost. But now, researchers using the Hubble Space Telescope have discovered a very odd planet that seems to be regrowing its atmosphere after having lost it in the past. This is the first time such a thing has been observed.

Planet GJ 1132 b is several times the size of Earth, making it a type called a sub-Neptune, and it started out with a thick atmosphere of hydrogen and helium. But, being close to its hot, young star, this atmosphere was quickly lost and the planet was reduced to a core around the size of Earth. So far, so typical.

Recommended Videos

Where it gets weird is recent observations from Hubble which show the planet has a secondary atmosphere of hydrogen, hydrogen cyanide, methane, and ammonia. Researchers think that hydrogen from the original atmosphere was absorbed by the planet’s mantle, and is now being released once more by volcanic activity. The atmosphere seems to be replenishing itself even as hydrogen continues to be lost into space.

Please enable Javascript to view this content

“It’s super exciting because we believe the atmosphere that we see now was regenerated, so it could be a secondary atmosphere,” said study co-author Raissa Estrela of NASA’s Jet Propulsion Laboratory (JPL) in a statement. “We first thought that these highly irradiated planets could be pretty boring because we believed that they lost their atmospheres. But we looked at existing observations of this planet with Hubble and said, ‘Oh no, there is an atmosphere there.’”

The unusual system seems to have developed due to a phenomenon called tidal heating, in which friction from the planet’s elliptical orbit causes heat to build up inside the planet. This heat keeps the planet’s mantle hot, which keeps the volcanic activity going.

This finding has implications for how atmospheres might have developed on other exoplanets, and also gives an opportunity for researchers to learn more about the geology of this planet.

“This atmosphere, if it’s thin — meaning if it has a surface pressure similar to Earth — probably means you can see right down to the ground at infrared wavelengths,” said lead author Mark Swain of JPL. “That means that if astronomers use the James Webb Space Telescope to observe this planet, there’s a possibility that they will see not the spectrum of the atmosphere, but rather the spectrum of the surface. And if there are magma pools or volcanism going on, those areas will be hotter. That will generate more emission, and so they’ll potentially be looking at the actual geological activity — which is exciting!”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Astronomers spot strange exoplanet with a tail 350,000 miles long
Artist's concept depicts new research that has expanded our understanding of exoplanet WASP-69 b's "tail."

Astronomers using the W. M. Keck Observatory in Hawaii have made a startling finding: a distant exoplanet with a tail hundreds of thousands of miles long. Planet WASP-69 b is located 164 light-years away, and as it orbit, it is followed by a stream of escaping gas that forms a tail -- making it look a little like a comet.

The planet is a type called a hot Jupiter, meaning it is a large gas giant that orbits very close to its star. So close, in fact, that a year there lasts less than four days and it has a blistering temperature of over 600 degrees Celsius.

Read more
Feast your eyes on 10 years of Hubble images of Jupiter, Saturn, Uranus, Neptune
This is a montage of NASA/ESA Hubble Space Telescope views of our solar system's four giant outer planets: Jupiter, Saturn, Uranus, and Neptune, each shown in enhanced color. The images were taken over nearly 10 years, from 2014 to 2024.

While the Hubble Space Telescope might be most famous for its images of beautiful and far-off objects like nebulae or distant galaxies, it also takes images of objects closer to home, including the planets right here in our own solar system. For the past 10 years, Hubble has been studying the outer planets in a project called OPAL (Outer Planet Atmospheres Legacy), capturing regular images of each of the four outer planets so scientists can study their changes over time.

The planets Jupiter, Saturn, Uranus, and Neptune are different in many ways from Earth, as they are gas giants and ice giants rather than rocky planets. But they do have some similar phenomena, such as weather that regularly changes, including epic events like storms that are so large they can be seen from space. Jupiter's Great Red Spot, for example, the big orange-red eye shape that is visible on most images of the planet, is an enormous storm larger than the width of the entire Earth and which has been raging for centuries.

Read more
Jupiter will be at its biggest and brightest this weekend. Here’s how to see it
An image of the planet Jupiter.

This weekend will bring a striking event for sky watchers, as Jupiter is will be at its biggest and brightest. This is a great opportunity to look up and see one of the brightest objects in the sky.

This is occurring because Jupiter will be in opposition on Saturday, December 7, which means that it is directly opposite from the sun as seen from Earth. This happens every 13 months. In addition, Jupiter is at its closest to Earth just one day earlier, on Friday, December 6. This happens because, although Earth and Jupiter both have orbits around the sun that are almost circular, they are not perfectly circular. Both orbits are slightly oval shaped, called elliptical, and in 2022, Jupiter came its closest to Earth in 70 years. This is still affecting the relative closeness of Jupiter and how big it is in the sky.

Read more