Skip to main content

How this supercomputer will use A.I. to map the universe’s dark energy

The Perlmutter supercomputer at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory
The Perlmutter supercomputer at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory Berkeley Lab

To hunt for one of the most mysterious forces in the universe, you need a powerful computer. Soon the hunt for dark energy will get a boost from a next-generation supercomputer, which will help in a project to create the most detailed 3D map yet of the universe.

Recommended Videos

The Wall Street Journal reports that the new Perlmutter supercomputer, recently installed at the National Energy Research Scientific Computing Center in Berkeley, California, will begin working on the Dark Energy Spectroscopic Instrument (DESI) survey project this summer. The project aims to learn more about dark energy, a hypothesized type of energy that accounts for a whopping 68% of the universe. To do this, the DESI instrument at the Kitt Peak National Observatory in Arizona will observe the night sky with 5,000 spectroscopic “eyes” which will record the light from 35 million galaxies.

To analyze all of that data, researchers will use the Perlmutter supercomputer. Named after Nobel Prize-winning astrophysicist Saul Perlmutter, the computer is a significant upgrade over the lab’s previous supercomputer, Cori, and is predicted to reach 100 petaFLOPS of processing power.

Perlmutter will use artificial intelligence to identify significant objects in the DESI data, then other applications can calculate the distance between these objects. By observing how gravity operates on a very large scale, researchers can pick up clues about the expansion of the universe, and from this, learn about dark energy.

That’s because dark energy is something we know exists due to the way the universe expands. Scientists have known for a long time that the universe is expanding, but research using the Hubble Space Telescope in the 1990s showed that the rate of this expansion was not slowing down, as would be expected due to gravity, but was actually accelerating. That’s the puzzle: There’s some unknown force pushing galaxies outward, and that force is what we call dark energy. To understand it more, we need to track distant objects like galaxies or quasars and map their distance.

To this end, the DESI project aims to produce a 3D map of the sky, far more detailed than any other 3D map made to date. “That allows us to look further back into the history of the universe and to a time period that’s never been probed [at high precision] for dark energy studies,” Aaron Meisner, a staff scientist at the National Science Foundation’s NOIRLab, told the WSJ.

DESI is expected to begin its five-year survey later this year.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
A galaxy with layers like an onion shines in Dark Energy Camera image
The symmetrical, onion-like layers of shell galaxy NGC 3923 are showcased in this galaxy-rich image taken by the US Department of Energy’s (DOE) Dark Energy Camera mounted on the National Science Foundation’s (NSF) Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. A nearby, massive galaxy cluster is also captured exhibiting the phenomenon known as gravitational lensing.

A new image taken by the Dark Energy Camera shows a "galactic onion," a shell galaxy with multiple layers that are spread out over a distance of 150,000 light-years. At around twice the size of the Milky Way, the galaxy NGC 3923 is large, but even larger is a nearby galaxy cluster that has so much mass that it is bending space-time, making the light from distant galaxies behind it bend like a magnifying glass in a process called gravitational lensing.

The Dark Energy Camera is ground-based instrument located at the Víctor M. Blanco 4-meter Telescope in Chile and was originally built to observe many galaxies as part of a project called the Dark Energy Survey. Now, it is also used for other observations such as imaging dwarf galaxies, merging galaxies, and more.

Read more
See the incredible first images taken by the dark matter-hunting Euclid telescope
Euclid’s Near-Infrared Spectrometer and Photometer (NISP) instrument is dedicated to measuring the amount of light that galaxies emit at each wavelength. It will image the sky in infrared light (900–2000 nm) to measuring the brightness and intensity of light. This image was taken during commissioning of Euclid to check that the focused instrument worked as expected. This is a raw image taken using NISP’s ‘Y’ filter. Because it is largely unprocessed, some unwanted artefacts remain – for example the cosmic rays that shoot straight across, seen especially in the VIS image. The Euclid Consortium will ultimately turn the longer-exposed survey observations into science-ready images that are artefact-free, more detailed, and razor sharp.

The recently-launched Euclid space telescope just took some of its first images, and the European Space Agency (ESA) has shared them to give a taste of what is to come from this dark matter investigation tool.

Even though they are only preliminary test images, they still give a stunning view of distant galaxies and show what Euclid will be able to produce once it begins its science operations in a few months' time. The aim of the mission is to learn about dark matter and dark energy by creating a 3D map of the dark matter in the universe.

Read more
Spiral galaxy caught in the act as it’s about to eat its dwarf galaxy neighbor
The spiral galaxy NGC 1532, also known as Haley’s Coronet, is caught in a lopsided tug of war with its smaller neighbor, the dwarf galaxy NGC 1531. The image — taken by the US Department of Energy’s (DOE) Dark Energy Camera mounted on the National Science Foundation’s (NSF) Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab — captures the mutual gravitational influences of a massive- and dwarf-galaxy merger.

A recent image from the Dark Energy Camera shows an act of galactic cannibalism, with a spiral galaxy similar to our Milky Way about to devour a nearby dwarf galaxy that has wandered into its path.

The dramatic interaction is occurring between a large spiral galaxy known as Haley's Coronet and a smaller dwarf galaxy called NGC 1531. The dwarf galaxy is in the process of merging with the larger galaxy, which is being pulled into an irregular shape by the gravitational forces.

Read more