Skip to main content

Astronomers discover bizarre exoplanet orbiting three stars

Astronomers have identified a cosmic oddity: What may be the first planet ever discovered that orbits three stars. The GW Ori system is a triple star system, with three stars bound to each other by gravity, and recent observations of the dust ring around the stars suggest that there is a large planet orbiting all three of them in what is called a circumtriple orbit.

In the image below, you can see the dust rings around the triple star system which gave astronomers a clue that there may be a planet orbiting there. There is a noticeable gap in the dust ring, which suggests the presence of a massive planet. The image on the left was taken using the Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile, and has been processed to show the dust rings in the best clarity. The image on the right shows how the innermost ring casts a shadow across the rest of the dust ring.

GW Orionis, a triple star system with a mysterious gap in its surrounding dust rings. UNLV astronomers hypothesize the presence of a massive planet in the gap, which would be the first planet ever discovered to orbit three stars. The left image, provided by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope, shows the disc’s ringed structure, with the innermost ring separated from the rest of the disc. The observations in the right image show the shadow of the innermost ring on the rest of the disc. UNLV astronomers used observations from ALMA to construct a comprehensive model of the star system.
An image of GW Orionis, a triple star system with a mysterious gap in its surrounding dust rings. ALMA (ESO/NAOJ/NRAO), ESO/Exeter/Kraus et al.

To understand this unusual system, astronomers from the University of Nevada, Las Vegas, used the data collected by ALMA to create a model of the system. They considered various possibilities of what could have caused the gap in the dust rings, such as the idea it could have been caused by the gravitational forces of the three stars in the center of the system.

But the most likely explanation for the finding is the presence of at least one large planet, similar in size and mass to Jupiter. Although the system is too far away for the planet to be detected directly, this was the model which best fitted the data. The researchers hope to collect more observations using ALMA in the future to confirm whether there is in fact a planet there.

“It’s really exciting because it makes the theory of planet formation really robust,” lead author Jeremy Smallwood said in a statement. “It could mean that planet formation is much more active than we thought, which is pretty cool.”

The research is published in the journal Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
How astronomers used James Webb to detect methane in the atmosphere of an exoplanet
An artists rendering of a blue and white exoplanet known as WASP-80 b, set on a star-studded black background. Alternating horizontal layers of cloudy white, grey and blue cover the planets surface. To the right of the planet, a rendering of the chemical methane is depicted with four hydrogen atoms bonded to a central carbon atom, representing methane within the exoplanet's atmosphere. An artist’s rendering of the warm exoplanet WASP-80 b whose color may appear bluish to human eyes due to the lack of high-altitude clouds and the presence of atmospheric methane identified by NASA’s James Webb Space Telescope, similar to the planets Uranus and Neptune in our own solar system.

One of the amazing abilities of the James Webb Space Telescope is not just detecting the presence of far-off planets, but also being able to peer into their atmospheres to see what they are composed of. With previous telescopes, this was extremely difficult to do because they lacked the powerful instruments needed for this kind of analysis, but scientists using Webb recently announced they had made a rare detection of methane in an exoplanet atmosphere.

Scientists studied the planet WASP-80 b using Webb's NIRCam instrument, which is best known as a camera but also has a slitless spectroscopy mode which allows it to split incoming light into different wavelengths. By looking at which wavelengths are missing because they have been absorbed by the target, researchers can tell what an object -- in this case, a planetary atmosphere -- is composed of.

Read more
James Webb investigates a super puffy exoplanet where it rains sand
Artistic concept of the exoplanet WASP-107b and its parent star. Even though the rather cool host star emits a relatively small fraction of high-energy photons, they can reach deep into the planet’s fluffy atmosphere.

Exoplanets come in many forms, from dense, rocky planets like Earth and Mars to gas giants like Jupiter and Saturn. But some planets discovered outside our solar system are even less dense than gas giants and are a type known informally as super-puff or cotton candy planets. One of the least dense exoplanets known, WASP-107b, was recently investigated using the James Webb Space Telescope (JWST) and the planet's weather seems to be as strange as its puffiness.

The planet is more atmosphere than core, with a fluffy atmosphere in which Webb spotted water vapor and sulfur dioxide. Strangest of all, Webb also saw silicate sand clouds, suggesting that it would rain sand between the upper and lower layers of the atmosphere. The planet is almost as big as Jupiter but has a tiny mass similar to that of Neptune.

Read more
Hubble spots an Earth-sized exoplanet just 22 light-years away
An artist’s concept of the nearby exoplanet, LTT 1445Ac, which is the size of Earth. The planet orbits a red dwarf star.

Although astronomers have now discovered more than 5,000 exoplanets, or planets outside of the solar system, the large majority of these planets are considerably larger than Earth. That's partly because it's easier to spot larger planets from tremendous distances across space. So it's exciting when an Earth-sized planet is discovered -- and the Hubble Space Telescope has recently confirmed that a nearby planet, which is diminutive by exoplanet standards, is 1.07 times the size of Earth.

The planet LTT 1445Ac was first discovered by NASA's Transiting Exoplanet Survey Satellite (TESS) in 2022, but it was hard to determine its exact size due to the plane of its orbit around its star as seen from Earth. “There was a chance that this system has an unlucky geometry and if that’s the case, we wouldn’t measure the right size. But with Hubble’s capabilities we nailed its diameter,” said lead researcher Emily Pass of the Harvard-Smithsonian Center for Astrophysics in a statement.

Read more