Skip to main content

How fast is the universe expanding? It’s complicated, Hubble shows

The Hubble Space Telescope might be best known by the public for the beautiful images of space it captures, but it is most famous among astronomers for producing groundbreaking insights into the expansion of the universe. Before the telescope was launched, scientists knew that the universe was expanding, but they didn’t know how fast this expansion was happening. Findings from Hubble in the 1990s pinned this figure down accurately for the first time.

The rate of the expansion of the universe is called the Hubble constant (named, like the telescope, after the astronomer Edwin Hubble who found the first proof of the universe expanding in the 1920s and 1930s), and is one of the most important numbers in cosmology. This constant is important to understand how the universe has evolved and to pinpoint how old the universe is as the expansion can be traced back to the big bang. Before the launch of the Hubble Space Telescope, scientists put the age of the universe at anywhere between 8 billion years old and 20 billion years old. Thanks to Hubble data, this figure has been refined to a much more accurate 13.8 billion years old.

A collection of 36 images from NASA's Hubble Space Telescope features galaxies that are all hosts to both Cepheid variables and supernovae.
This collection of 36 images from NASA’s Hubble Space Telescope features galaxies that are all hosts to both Cepheid variables and supernovae. These two celestial phenomena are both crucial tools used by astronomers to determine astronomical distance, and have been used to refine our measurement of the Hubble constant, the expansion rate of the universe. SCIENCE: NASA, ESA, Adam G. Riess (STScI, JHU)

That doesn’t mean the work is done though. By the 2000s, the estimate for the Hubble constant was fairly accurate, at 72 kilometers per second per megaparsec, but this had an error of plus or minus 8. Since then, this figure has been refined more and more, with a recent finding of 74.03 in 2019.

However, there’s a kink in this explanation. The expansion rate as measured by Hubble and other telescopes does not agree with the rate predicted by data from the earliest stages of the universe. So researchers used Hubble data in a project called SHOES which used both variable stars called Cepheids and Type Ia supernovae as mile markers to measure distances, in order to get the most precise measurement yet of the Hubble constant.

“This is what the Hubble Space Telescope was built to do, using the best techniques we know to do it. This is likely Hubble’s magnum opus, because it would take another 30 years of Hubble’s life to even double this sample size,” said Adam Riess, lead author of the study, in a statement. “You are getting the most precise measure of the expansion rate for the universe from the gold standard of telescopes and cosmic mile markers.”

Riess’s team looked at 42 supernova explosions, which act as distance markers, and were able to hone in on a figure of 73.04 for the Hubble constant, with an uncertainty of just 1.04. That is eight times more precise than Hubble was expected to be able to produce when it was launched.

However, even at this accuracy, there is still a discrepancy between this number and that predicted by data from the earliest universe, which is measured by looking at the cosmic microwave background. These results predict that the Hubble constant should be around 67.

So the mystery remains, and astronomers don’t have an explanation for why these numbers differ. The discrepancy could point to a whole new type of physics we have yet to learn about.

For now, though, the number for the Hubble constant as measured by looking at today’s universe is as accurate as it is likely to get.

“The Hubble constant is a very special number,” said cosmologist Licia Verde in the statement. “It can be used to thread a needle from the past to the present for an end-to-end test of our understanding of the universe. This took a phenomenal amount of detailed work.”

The research will be published in The Astrophysical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble observes a galaxy that hosted an epic supernova explosion
The tranquil spiral galaxy UGC 12295.

This week's image from the Hubble Space Telescope shows a stunning view of a spiral galaxy called UGC 12295, located nearly 200 million light-years away. This galaxy appears face-on from Earth, meaning we can get a great view of its structure and spiral arms -- captured here using Hubble's Wide Field Camera 3 instrument.

The galaxy UGC 12295 is best known for being the location of a supernova observed in 2015. A supernova occurs when a massive star, much bigger than our sun, runs out of fuel and comes to the end of its life. As the star has less and less fuel and no longer produces as much outward pressure from the fusion occurring at its core, the gravity pushing in on the star takes over and causes the star to collapse. This collapse happens so fast that it creates a shockwave that causes the star's outer layers to explode, an event called a supernova.

Read more
Hubble image shows a lonely star glowing over an irregular background galaxy
The bright star BD+17 2217. Arp 263 – also known as NGC 3239 in the foreground and irregular galaxy Arp 263 in the background.

This week's image from the Hubble Space Telescope is notable for the way it was composed as much as for the object it shows. Composed of two different exposures which have been merged, it shows the star BD+17 2217 shining over the background irregular galaxy Arp 263.

Irregular galaxies are those with irregular structures, unlike elliptical galaxies or spiral galaxies such as our Milky Way. Arp 263 is patchy and cloudy, with some areas glowing brightly due to star formation while other areas appear practically bare. Such galaxies are typically formed due to interactions with other galaxies, which can occur when a massive galaxy passes by and pulls the original galaxy out of shape. In the case of Arp 263, it is thought that it developed its irregular shape when two galaxies merged.

Read more
Hubble observes a cluster of boulders around impacted asteroid Dimorphos
A NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos taken on 19 December 2022.

Last year, NASA deliberately crashed a spacecraft into an asteroid, in a first-of-its-kind test of planetary defense. At the time, telescopes around the world including the Hubble Space Telescope observed the impact between the DART spacecraft and the Dimorphos asteroid, capturing footage of the plumes of dust thrown up. Now, Hubble has observed Dimorphos once again and seen that a number of boulders have been ejected from the asteroid.

The Hubble image shown below was taken on 19 December 2022, around four months after the impact, and shows the bright streak of the asteroid across the sky, surrounded by small boulders which were knocked loose during the impact. This view was only possible after several months as the impact initially sent up large amounts of dust which made it difficult to see the asteroid in detail.

Read more