Skip to main content

Hubble finds an unexpected collection of black holes

Hubble's view of dazzling globular cluster NGC 6397
Hubble’s view of dazzling globular cluster NGC 6397. NASA, ESA, and T. Brown and S. Casertano (STScI) Acknowledgement: NASA, ESA, and J. Anderson (STScI)

When scientists using the Hubble Space Telescope turned their attention to a globular cluster called NGC 6397, they were expecting to find one, medium-sized black hole at its center. But instead, they found something rather more strange. They found evidence of a collection of smaller black holes, in a cosmic oddity that could teach us about how black holes evolve.

There’s a “missing link” in the world of black holes, as we see regular-sized black holes caused by the collapse of a star and very large black holes at the heart of galaxies called supermassive black holes. But we almost never see black holes in between these two sizes. This means we don’t really understand how black holes merge or grow.

The hunt for medium-sized black holes, or intermediate-mass black holes (IMBH) as they are known, is what drew the researchers’ attention to NGC 6397. They hoped to find one of these missing link black holes at the center of the cluster. But that’s not what they found.

Artist’s Impression of the Black Hole Concentration in NGC 6397
This is an artist’s impression created to visualize the concentration of black holes at the center of NGC 6397. In reality, the small black holes here are far too small for the direct observing capacities of any existing or planned future telescope, including Hubble. It is predicted that this core-collapsed globular cluster could be host to more than 20 black holes. ESA/Hubble, N. Bartmann

The orbits of the stars in the cluster indicated that there wasn’t a single point of mass around which they orbited. They had seemingly random orbits that were best explained by the presence of multiple points of mass.

“We found very strong evidence for invisible mass in the dense central regions of the cluster, but we were surprised to find that this extra mass is not point-like but extended to a few percent of the size of the cluster,” explained lead researcher Eduardo Vitral in a statement.

That made them think that what they were looking at was a collection of smaller black holes, each too small to be imaged directly. But their presence can be inferred by looking at the movements of the stars.

This unusual finding fits in with other recent work suggesting that the central regions of globular clusters could be full of smaller black holes. “Our study is the first finding to provide both the mass and the extent of what appears to be a collection of mostly black holes in a core-collapsed globular cluster,” Vitral said.

Scientists believe these black holes formed from the remnants of the massive stars which once populated the cluster before they ran out of fuel and collapsed in on themselves. These stars sank to the center of the cluster due to their mass, forming the concentration of smaller black holes.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Biggest stellar black hole to date discovered in our galaxy
Astronomers have found the most massive stellar black hole in our galaxy, thanks to the wobbling motion it induces on a companion star. This artist’s impression shows the orbits of both the star and the black hole, dubbed Gaia BH3, around their common centre of mass. This wobbling was measured over several years with the European Space Agency’s Gaia mission. Additional data from other telescopes, including ESO’s Very Large Telescope in Chile, confirmed that the mass of this black hole is 33 times that of our Sun. The chemical composition of the companion star suggests that the black hole was formed after the collapse of a massive star with very few heavy elements, or metals, as predicted by theory.

Black holes generally come in two sizes: big and really big. As they are so dense, they are measured in terms of mass rather than size, and astronomers call these two groups of stellar mass black holes (as in, equivalent to the mass of the sun) and supermassive black holes. Why there are hardly any intermediate-mass black holes is an ongoing question in astronomy research, and the most massive stellar mass black holes known in our galaxy tend to be up to 20 times the mass of the sun. Recently, though, astronomers have discovered a much larger stellar mass black hole that weighs 33 times the mass of the sun.

Not only is this new discovery the most massive stellar black hole discovered in our galaxy to date but it is also surprisingly close to us. Located just 2,000 light-years away, it is one of the closest known black holes to Earth.

Read more
Hubble discovers over 1,000 new asteroids thanks to photobombing
This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern.

The Hubble Space Telescope is most famous for taking images of far-off galaxies, but it is also useful for studying objects right here in our own solar system. Recently, researchers have gotten creative and found a way to use Hubble data to detect previously unknown asteroids that are mostly located in the main asteroid belt between Mars and Jupiter.

The researchers discovered an incredible 1,031 new asteroids, many of them small and difficult to detect with several hundred of them less than a kilometer in size. To identify the asteroids, the researchers combed through a total of 37,000 Hubble images taken over a 19-year time period, identifying the tell-tale trail of asteroids zipping past Hubble's camera.

Read more
Hubble spots a bright galaxy peering out from behind a dark nebula
The subject of this image taken with the NASA/ESA Hubble Space Telescope is the spiral galaxy IC 4633, located 100 million light-years away from us in the constellation Apus. IC 4633 is a galaxy rich in star-forming activity and also hosts an active galactic nucleus at its core. From our point of view, the galaxy is tilted mostly towards us, giving astronomers a fairly good view of its billions of stars.

A new image from the Hubble Space Telescope shows a galaxy partly hidden by a huge cloud of dust known as a dark nebula. The galaxy IC 4633 still shines brightly and beautifully in the main part of the image, but to the bottom right, you can see dark smudges of dust that are blocking the light from this part of the galaxy.

Taken using Hubble's Advanced Camera for Surveys (ACS) instrument, the image also incorporates data from the DECam instrument on the Víctor M. Blanco 4-meter Telescope, which is located in Chile. By bringing together data from the space-based Hubble and the ground-based DECam, astronomers can get a better look at this galaxy, located 100 million light-years away, and the dark dust partially obscuring it.

Read more